在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和池化操作,而这两种函数中都存在参数padding,该参数的设置很容易引起错误,所以在此总结下. 1.为什么要使用padding 在弄懂padding规则前得先了解拥有padding参数的函数,在TensorFlow中,主要使用tf.nn.conv2d()进行(二维数据)卷积操作,tf.nn.max_…
本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation   最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题…
1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool()等,用法如下: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,name=None) #来进行(二维数据)卷积操作 tf.nn.max_pool_with_argmax(input, ksize, stride…
在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/charlotte77/p/5629865.html 最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反…
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容…
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容…
点击查看AngularJS系列目录 彻底弄懂AngularJS中的transclusion AngularJS中指令的重要性是不言而喻的,指令让我们可以创建自己的HTML标记,它将自定义元素变成了一个一个的模块,极大的体现了前端开发中的模块化模式,并提高了代码的易读性和重用性.AngularJS中的指令也是学习AngularJS中的一个难点所在,其中的许多属性,需要反复学习,认真体会,方能领悟其中的精妙之处. 今天我们要讲的就是其中一个重点和难点 – transclusion.关于这个话题我之前…
目录 一. Netty是什么? 二. Netty 的使用场景 三. Netty通讯示例 1. Netty的maven依赖 2. 服务端代码 3. 客户端代码 四. Netty线程模型 五. Netty模块组件 1. [Bootstrap.ServerBootstrap]: 2. [Future.ChannelFuture]: 3. [Channel]: 4.[Selector]: 5. [NioEventLoop]: 6.[NioEventLoopGroup]: 7.[ChannelHandle…
目录 一. <Scalable IO In Java> 是什么? 二. IO架构的演变历程 1. Classic Service Designs 经典服务模型 2. Event-driven Designs 事件驱动模型 3. Basic Reactor Design 最基本的响应设计 4. Worker Thread Pools:工作线程池模型 5. Using Multiple Reactors:多响应器模型 6. 文档后面讲解的buffer ByteBuffer channel Sele…
目录 一文弄懂-BIO,NIO,AIO 1. BIO: 同步阻塞IO模型 2. NIO: 同步非阻塞IO模型(多路复用) 3.Epoll函数详解 4.Redis线程模型 5. AIO: 异步非阻塞IO模型 (NIO 2.0) 1. BIO: 同步阻塞IO模型…