Partitioner分区类的作用是什么? 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中:按照性别划分的话,需要把同一性别的数据放到一个文件中.我们知道最终的输出数据是来自于Reducer任务.那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行.Reducer任务的数据来自于Mapper任务,也就说Mapper任务要划分数据,对于不同的数据分配给不同的Reducer任务运行.Mapper任务…
本文测试文本: tom 20 8000 nancy 22 8000 ketty 22 9000 stone 19 10000 green 19 11000 white 39 29000 socrates 30 40000    MapReduce中,根据key进行分区.排序.分组 MapReduce会按照基本类型对应的key进行排序,如int类型的IntWritable,long类型的LongWritable,Text类型,默认升序排序    为什么要自定义排序规则?现有需求,需要自定义key类…
MapReduce自带的分区器是HashPartitioner 原理:先对map输出的key求hash值,再模上reduce task个数,根据结果,决定此输出kv对,被匹配的reduce任务取走. 自定义分分区需要继承Partitioner,复写getpariton()方法 自定义分区类: 注意:map的输出是<K,V>键值对 其中int partitionIndex = dict.get(text.toString()),partitionIndex是获取K的值 附:被计算的的文本 Dea…
程序使用的测试文本数据: Dear River Dear River Bear Spark Car Dear Car Bear Car Dear Car River Car Spark Spark Dear Spark 1编写主要类 (1)Maper类 首先是自定义的Maper类代码 public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> { public void map(LongWrit…
阿里封神谈hadoop学习之路   封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 spark 摘要: 在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop.hive.spark等.笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1.ODPS等项目,目前base在E-Mapreduce.在这,笔者尽可能梳理下hadoop的学习之路. 引言 当前,越来越多的同…
(实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnblogs.com/qingyunzong/category/1169344.html 问题一: <Hadoop学习之路(四)Hadoop集群搭建和简单应用>执行start-dfs.sh时,报错3个: 1. 报错现象: 原因:hadoop默认ssh采用的是22端口号,但是我们公司内部机器为了安全已修…
1 Partitioner分区 1.1 Partitioner分区描述 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,按照手机号码段划分的话,需要把同一手机号码段的数据放到一个文件中:按照省份划分的话,需要把同一省份的数据放到一个文件中:按照性别划分的话,需要把同一性别的数据放到一个文件中.我们知道最终的输出数据是来自于Reducer任务.那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行.Reducer任务的数据来自于Mapper任务,也就说Ma…
一.MapReduce概述 Hadoop MapReduce是一个分布式计算框架,用于编写批处理应用程序.编写好的程序可以提交到Hadoop集群上用于并行处理大规模的数据集. MapReduce作业通过将输入的数据集拆分为独立的块,这些块由map以并行的方式处理,框架对map的输出进行排序,然后输入到reduce中.MapReduce框架专门用于<key,value>键值对处理,它将作业的输入视为一组<key,value>对,并生成一组<key,value>对作为输出.…
概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数据混洗 ——(核心机制:数据分区,排序,局部聚合,缓存,拉取,再合并 排序) 3.具体来说:就是将 MapTask 输出的处理结果数据,按照 Partitioner 组件制定的规则分发 给 ReduceTask,并在分发的过程中,对数据按 key 进行了分区和排序 MapReduce的Shuffle…
MapReduce 多 Job 串联 需求 一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现 实例 以下有两个 MapReduce 任务,分别是 Flow 的 SumMR 和 SortMR,其中有依赖关系:SumMR 的输出是 SortMR 的输入,所以 SortMR 的启动得在 SumMR 完成之后 Configuration conf1 = new Configuration(); Con…