GCD Reduce Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge You are given a sequence {A1, A2, ..., AN}. You task is to change all the element of the sequence to 1 with the following operations (you may need to apply it multiple ti…
Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. (a,b) can be easily found by the Euclidean algorithm. Now Carp is consid…
[本文出自天外归云的博客园] 举例 下面代码围绕一个Student类综合举例说明装饰器.生成器.动态获取/添加类成员.列表推导式.reduce函数.lambda表达式的实际应用: from functools import reduce def show(func): def wrapper(_object): print([i for i in func(_object)]) return wrapper @show def generator(_object): for attr in _o…
Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the smallest positive integer that is divisible by both a and b. for example, lcm(2,3)=6 and lcm(4,6)=12. (2) gcd(a,b), the greatest common divisor of tw…
GCD Expectation Time Limit: 4 Seconds Memory Limit: 262144 KB Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, x2,…,xm} (each nonempty subset has…
A New Change Problem Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 533 Accepted Submission(s): 265 Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Her…
如果一开始就满足题意,不用变换. 否则,如果对一对ai,ai+1用此变换,设新的gcd为d,则有(ai - ai+1)mod d = 0,(ai + ai+1)mod d = 0 变化一下就是2 ai mod d = 0 2 ai+1 mod d = 0 也就是说,用两次变换之后,gcd至少扩大2倍,于是,最优方案就是我们将所有的奇数都变成偶数. 只需要找出所有奇数段,答案就是sigma([奇数段的长度/2]+(奇数段的长度 mod 2 ==1 ?)). #include<cstdio> #i…
A New Change Problem Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can assume that there are enough coins for both kinds.Please calculate the maximal value that you cannot pay and the total number tha…
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const int N=4000002; long long sumv[maxn],f[maxn]; int phi[maxn],prime[maxn],vis[maxn]; void solve(){ phi[1]=1; int cnt=0; for(int i=2;i<=R;++i){ if(!vis[i])…