MapReduce实例2(自定义compare.partition)& shuffle机制 实例:统计流量 有一份流量数据,结构是:时间戳.手机号.....上行流量.下行流量,需求是统计每个用户(手机号)的总上行.总下行以及总流量数值. Github地址 分析 由于希望的输出是一个 {手机号 上行流量 下行流量 总流量} 这样的结构,所以需要写个javabean把它们封装成一个类. private String phoneNum; private long upFlow; private lon…
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计算出MapTask的数量 (以一个MapTask为例) 5.Maptask调用inputFormat生成RecordReader,将自己处理的切片文件内容打散成K,V值 6.MapTask将打散好的K,V值交给Mapper,Mapper经过一系列的处理将KV值写出 7.写出的KV值被outputCo…
Shuffle机制 Mapreduce确保每个reducer的输入都是按键排序的.系统执行排序的过程(Map方法之后,Reduce方法之前的数据处理过程)称之为Shuffle. partition分区 Partition分区流程处于Mapper数据属于初到环形缓冲区时进行,此时会将通过Partition分区获取到的每一行key-value对应的分区值计入环形缓冲流的左. 问题引出 要求将统计结果按照条件输出到不同文件中(分区).比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区) 分区…
一.shuffle机制 1.概述 (1)MapReduce 中, map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 Shuffle:(2)Shuffle: 数据混洗 ——(核心机制:数据分区,排序,缓存):(3) 具体来说:就是将 maptask 输出的处理结果数据,分发给 reducetask,并在分发的过程 中,对数据按 key 进行了分区和排序:    2.主要流程 3.详细流程 (1)maptask 收集我们的 map()…
1. 概述 Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle. 2. Partition 分区 需求:要求将统计结果按照条件输出到不同文件中(分区).比如:将统计结果按照手机归属地,不同省份输出到不同文件中(分区). // 默认 Partitioner 分区 public class HashPartitioner<K, V> extends Partitioner<K, V> { public int getPartition(K key, V val…
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toString(),hashCode(),equals()方法 package com.areapartition; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apach…
1.Mapreduce的shuffle机制: Mapreduce中,map阶段处理的数据如何传递给Reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle 将maptask处理后的输出结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序 MapReduce程序的执行过程分为两个阶段:Mapper阶段和Reducer阶段. 1.MapReduce的Map阶段: 1.1.从HDFS读取数据: 由FileInputFormat实现类的g…
shuffle机制 1:每个map有一个环形内存缓冲区,用于存储任务的输出.默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spill.percent),一个后台线程把内容写到(spill)磁盘的指定目录(mapred.local.dir)下的新建的一个溢出写文件. 2:写磁盘前,要partition,sort.如果有combiner,combine排序后数据. 3:等最后记录写完,合并全部溢出写文件为一个分区且排序的文件. 4:Reducer通过Http方式…
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量. Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时.输出结果须要按key哈希.而且分发到每个Reducer上去.这个过程就是shuffle.因为shu…
MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt_01 222.8 Order_0000005 Pdt_05 25.8 Order_0000002 Pdt_03 322.8 Order_0000002 Pdt_04 522.4 Order_0000002 Pdt_05 822.4 Order_0000003 Pdt_01 222.8 代码实现 自…
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.ShuffleManager Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager // Let the user specify short names for shuffle managers val shortShuffleMgrNames = Map…
Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础属性和事件 Silverlight实例教程 - Validation数据验证DataAnnotation机制和调试技巧 Silverlight实例教程 - Validation客户端同步数据验证 Silverlight实例教程 - Validation服务器端异步数据验证 Silverlight实例…
本文介绍了java的自定义注解及注解类编写的规则, 并通过实例来说明下如何使用java的注解. 实例演示了注解在类,构造方法,方法和字段的使用. 可以从这里下载到完成的工程代码: http://dl.iteye.com/topics/download/f74972df-234f-30c9-aadd-ca2ed1376bc2 自定义注解类编写的一些规则: 1. Annotation型定义为@interface, 所有的Annotation会自动继承java.lang.Annotation这一接口,…
MapReduce实例&YARN框架 一个wordcount程序 统计一个相当大的数据文件中,每个单词出现的个数. 一.分析map和reduce的工作 map: 切分单词 遍历单词数据输出 reduce: 对从map中得到的数据的valuelist遍历累加,得到一个单词的总次数 二.代码 WordCountMapper(继承Mapper) 重写Mapper类的map方法. mapreduce框架每读一行数据就调用一次该方法,map的具体业务逻辑就写在这个方法体中. map和reduce的数据输入…
Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础属性和事件 Silverlight实例教程 - Validation数据验证DataAnnotation机制和调试技巧 Silverlight实例教程 - Validation客户端同步数据验证 Silverlight实例教程 - Validation服务器端异步数据验证 Silverlight实例…
JVM学习(1)——通过实例总结Java虚拟机的运行机制-转载http://www.cnblogs.com/kubixuesheng/p/5199200.html 文章转载自:http://www.cnblogs.com/kubixuesheng/p/5199200.html 特别在此声明.那位博主写的真的很好 ,感谢!! 俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及到的知识点总结如下: JVM的历史 JVM的运行流程简介 JVM的组成(基于 Java 7) JVM调优…
api的使用机制:继承.实例化.实现(继承)配置.实例(参数化)配置.机制管理模块 facade模式.管理模块…
1.概念 2.Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理 3.代码示例 FlowBean package com.ares.hadoop.mr.flowgroup; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean…
MapReduce和自定义Partition MobileDriver主类 package Partition; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; public class MobileDriver { public static void main(String[] args) { String[] paths = {"F:\\mobile.txt", "F…
Shuffle是map和reduce中间的数据调度过程,包括:缓存.分区.排序等. Shuffle数据调度过程: map task处理hdfs文件,调用map()方法,map task的collect thread将map()方法结果放入环形缓冲区(默认大小100M) 当环形缓冲区达到阈值(80%),将会触发溢出操作,split thread线程会调用HashPartitioner或者自定义的分区规则,对缓冲区内容进行分区,区内文件内容有序. 当环形缓冲区再次达到阈值,会再次触发溢出操作,重复步…
一个map task处理一个切片Split,切片是一个范围的数据,和blocksize大小没有必然关系. 1.每个map有一个环形内存缓冲区,用于存储任务的输出.默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spill.percent),一个后台线程把内容写到(spill)磁盘的指定目录(mapred.local.dir)下的新建的一个溢出写文件.2.写磁盘前,要partition,sort.如果有combiner,combine排序后数据.3.等最后记录写…
django  Pagination(分页) django 自带的分页功能非常强大,我们来看一个简单的练习示例: #导入Paginator>>> from django.core.paginator import Paginator#处理的对象 >>> objects = [) #查看总数据条数 >>> p.count 4#查看总页数 >>> p.num_pages >>> type(p.page_range) #…
在文章<MapReduce原理与设计思想>中,详细剖析了MapReduce的原理,这篇文章则通过实例重点剖析MapReduce 本文地址:http://www.cnblogs.com/archimedes/p/mapreduce-example-analysis.html,转载请注明源地址. 欢迎关注我的个人博客:www.wuyudong.com, 更多云计算与大数据的精彩文章 1.MapReduce概述 Hadoop Map/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运…
前面,讲到了hadoop的序列化机制,mr程序开发,自定义排序,自定义分组. 有多少个reduce的并发任务数可以控制,但有多少个map的并发任务数还没 缓存,分组,排序,转发,这些都是mr的shuffle. Soga 现在.来观察map阶段有几个yarnchild,reduce阶段有几个yarnchild.对应地,就是有多少个map的并发任务数,有多少个reduce的并发任务数 以上我,查看有多少个map并发任务数 查看map并发任务数之后,进程被回收. 查看reduce并发任务数 Reduc…
一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value. 问题:聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的part…
0. 说明 设置分区数量 && 编写自定义分区代码 1. 设置分区数量 分区(Partition) 分区决定了指定的 Key 进入到哪个 Reduce 中 分区目的:把相同的 Key 发送给同一个 Reduce 默认 hash 分区,算法 // 返回的分区号 (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks 设置分区数 job.setNumReduceTasks(3); 2. 代码编写 在 [MapReduce_1] 运行…
对于大数据计算框架而言,Shuffle阶段的设计优劣是决定性能好坏的关键因素之一.本文将介绍目前Spark的shuffle实现,并将之与MapReduce进行简单对比.本文的介绍顺序是:shuffle基本概念,MapReduce Shuffle发展史以及Spark Shuffle发展史. (1)  shuffle基本概念与常见实现方式 shuffle,是一个算子,表达的是多对多的依赖关系,在类MapReduce计算框架中,是连接Map阶段和Reduce阶段的纽带,即每个Reduce Task从每…
来自:http://blog.csdn.net/hezuoxiang/article/details/6878026 写了个mapreduce的JAVA程序,自定义了个partition class indexPartition extends HashPartitioner<Text, Text>{ public int getPartition(Text key, Text value,int numReduceTasks) {  Text tmp = new Text(key.toStr…
前言部分: 在Map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现.本实验中使用的是TextInputFormat,他提供的RecordReder会将文本的字节偏移量作为key,这一行的文本作为value.这就是自定义Map的输入是<LongWritable, Text>的原因.然后调用自定义Map的map方法,将一个个<LongWritable…