哈夫曼树的构建(C语言)】的更多相关文章

哈夫曼树的构建(C语言) 算法思路: 主要包括两部分算法,一个是在数组中找到权值最小.且无父结点两个结点位置,因为只有无父结点才能继续组成树: ​ 另一个就是根据这两个结点来修改相关结点值. 结构定义和头文件   #include <stdio.h> #include <malloc.h> #include <stdlib.h> #include <string.h> ​ #define OVERFLOW -1 ​ typedef struct { int…
本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若文章有错误或不足的地方,请帮忙指出! 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman…
参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>                                  — — 严蔚敏   赫夫曼树的概念 要了解赫夫曼树,我们要首先从扩充二叉树说起 二叉树结点的度 结点的度指的是二叉树结点的分支数目, 如果某个结点没有孩子结点,即没有分支,那么它的度是0:如果有一个孩子结点, 那么它的度数是1:如果既有左孩子也有右孩子,…
版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 近期忙着新版本的开发,此外正在回顾C语言,大部分时间没放在数据结构与算法的整理上,所以更新有点慢了,不过既然写了就肯定尽力将这部分完全整理好分享出来. 言归正传,开启本篇的正文. 一.什么是赫夫曼树 给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近. 以上来自百度百科,相信完全不了解的同学看…
赫夫曼(Huffman)树,由发明它的人物命名,又称最优树,是一类带权路径最短的二叉树,主要用于数据压缩传输. 赫夫曼树的构造过程相对比较简单,要理解赫夫曼数,要先了解赫夫曼编码. 对一组出现频率不同的字符进行01编码,如果设计等长的编码方法,不会出现混淆的方法,根据规定长度的编码进行翻译,有且只有一个字符与之对应.比如设计两位编码的方法,A,B,C,D字符可以用00-11来表示,接收方只要依次取两位编码进行翻译就可以得出原数据,但如果原数据只由n个A组成的,那发出的编码就是2n个0组成,这样的…
今天要讲的是天才哈夫曼的哈夫曼编码,这是树形数据结构的一个典型应用. !!!敲黑板!!!哈夫曼树的构建以及编码方式将是我们的学习重点. 老方式,代码+解释,手把手教你Python完成哈夫曼编码的全过程.. 首先,我先假设你已经有了二叉树的相关知识,主要就是概念和遍历方式这些点.如果没有这些知识储备,可能理解起来会比较困难. 好了,废话不多说. 哈夫曼树原理 秉着能不写就不写的理念,关于哈夫曼树的原理及其构建,还是贴一篇博客吧. http://www.cnblogs.com/mcgrady/p/3…
好,前面我们介绍了一般二叉树.完全二叉树.满二叉树,这篇文章呢,我们要介绍的是哈夫曼树. 哈夫曼树也叫最优二叉树,与哈夫曼树相关的概念还有哈夫曼编码,这两者其实是相同的.哈夫曼编码是哈夫曼在1952年提出的.现在哈夫曼编码多应用在文本压缩方面.接下来,我们就来介绍哈夫曼树到底是个什么东西?哈夫曼编码又是什么,以及它如何应用于文本压缩. 哈夫曼树(Huffman Tree) 给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Hu…
我们经常会用到文件压缩,压缩之后文件会变小,便于传输,使用的时候又将其解压出来.为什么压缩之后会变小,而且压缩和解压也不会出错.赫夫曼编码和赫夫曼树了解一下. 赫夫曼树: 它是一种的叶子结点带有权重的特殊二叉树,也叫最优二叉树.既然出现最优两个字肯定就不是随便一个叶子结点带有权重的二叉树都叫做赫夫曼树了. 赫夫曼树中有一个很重要的概念就是带权路径,带权路径最小的才是赫夫曼树. 树的路径长度是从根结点到每一个结点的长度之和,带权路径就是每一个结点的长度都乘以自己权重,记做WPL. 假设有abcd数…
[问题描述] 根据给定的若干权值可以构造出一颗哈夫曼树.构造的哈夫曼树可能不唯一,但是按照下面的选取原则所构造出来的哈夫曼树应该是唯一的. (1)每次选取优先级最低的两个结点,优先级最低的作为左子树,优先级高的作为右子树: (2)结点优先级大小的比较首先比较它们的权值,权值大的优先级高,权值小的优先级低,权值相等的按照位置关系来比较,位置在前面的优先级低,位置在后面的优先级高. (3)增加的新结点位置依次往后. 根据你所构造的哈夫曼树来设计每个权值的哈夫曼编码(左子树0右子树1),并计算该哈夫曼…
1. 前言 什么是哈夫曼树? 把权值不同的n个结点构造成一棵二叉树,如果此树满足以下几个条件: 此 n 个结点为二叉树的叶结点 . 权值较大的结点离根结点较近,权值较小的结点离根结点较远. 该树的带权路径长度是所有可能构建的二叉树中最小的. 则称符合上述条件的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree). 构建哈夫曼树的目的是什么? 用来解决在通信系统中如何使用最少的二进制位编码字符信息. 本文将和大家聊聊哈夫曼树的设计思想以及构建过程. 2. 设计思路 哈夫曼树产生的背景:…