题目传送门:LOJ #2249. 题意简述: 有一棵以 \(1\) 号节点为根节点的带边权的树. 除了 \(1\) 号节点的所有节点上都有人需要坐车到达 \(1\) 号节点. 除了 \(1\) 号节点,每个节点都有 \(5\) 个参数 \(f_u,s_u,p_u,q_u,l_u\). \(f_u\) 表示 \(u\) 号点的父亲,\(s_u\) 表示 \(u\) 号点与父亲之间的边的权值,\(p,q,l\) 为车票参数. 定义两个节点 \(u\) 和 \(v\) 之间的距离 \(dis_{u,v…
题目传送门:LOJ #2249. 题意简述: 有 \(n\) 个位置,第 \(i\) 个位置可以填在 \([a_i,b_i]\) (\(1\le a_i\le b_i\le 10^9\))之间的整数,也可以填 \(0\). 如果第 \(i\) 个位置填了非 \(0\) 的数,则这个数必须大于之前所有位置(\(1\) 到 \(i-1\) 的位置)上的数. 至少要有一个位置填上非 \(0\) 的数.问最终有几种填数方案,两种填数方案不同当且仅当某个位置上填的数不同. 题解: 要求即为选出一些位置填数…
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \(k\) 进制下的纯循环小数. 题解: 设分子为 \(x\),分母为 \(y\). 首先,因为要求的是互不相等的分数,取最简分数,即 \(x\perp y\). 其次,要求是纯循环小数,考虑竖式除法的过程,可以发现 \(\displaystyle\frac{x}{y}\) 在 \(k\) 进制下纯循环…
题目传送门:LOJ #2249. 题意简述: 有一棵以 \(1\) 号节点为根节点的带边权的树. 除了 \(1\) 号节点的所有节点上都有人需要坐车到达 \(1\) 号节点. 除了 \(1\) 号节点,每个节点都有 \(5\) 个参数 \(f_u,s_u,p_u,q_u,l_u\). \(f_u\) 表示 \(u\) 号点的父亲,\(s_u\) 表示 \(u\) 号点与父亲之间的边的权值,\(p,q,l\) 为车票参数. 定义两个节点 \(u\) 和 \(v\) 之间的距离 \(dis_{u,v…
「NOI2014」购票 写完了后发现写的做法是假的...然后居然过了,然后就懒得管正解了. 发现需要维护凸包,动态加点,询问区间,强制在线 可以二进制分组搞,然后你发现在树上需要资瓷撤回,然后暴力撤回(雾 然后就被卡了 卡法,在\(2^k-1\)位置搞一朵菊花 先留坑,以后要是会了一些神奇的姿势就来搞 这题叉积会爆ll,坑 Code: #include <cstdio> #include <cctype> #include <vector> #include <a…
「NOI2014」购票 解题思路 先列出 \(dp\) 式子并稍微转化一下 \[ dp[u] =\min(dp[v]+(dis[u]-dis[v]) \times p[u] + q[u])) \ \ \ \ (dis[v]-lim[u] \leq dis[u]) \\ dp[u]=\min(dp[v]+dis[v]\times p[u]) + p[u]\times dis[u]+q[u] \\ \] 假设有 \(dis(v2)< dis(v1)\) 且 \(p(u)\) 在 \(v2\) 的取值…
几乎肝了半个下午和整个晚上 斜率优化的模型好多啊... LOJ #2249 Luogu P2305 题意 给定一棵树,第$ i$个点如果离某个祖先$ x$的距离不超过$ L_i$,可以花费$ P_i·dist(i,x)+Q_i$的代价跳到点$ x$, 求每个点走到根的最小代价 点数不超过$ 2·10^5$ $ Solution$ 用$dis_x$表示$ x$到根的距离 首先考虑一条链的情况 尝试斜率优化 容易推出两个点$j,k$,若$ dis_k>dis_j且k比j优$当且仅当$ \frac{d…
T1 T166167 「PMOI-4」人赢 题目大意 给一个数列的前两项分别为\(n\)和\(m\) 当\(i\geq3\)时\(a_i = a_{i-1}*a_{i-2}\)的个位 给定\(n\),\(m\),\(k\), 求以\(n\)和\(m\)为前两项的数列的第\(k\)项 (数据范围 $0 \leq n,m \leq 9 $ \(1 \leq k \leq 1e12\) 思路 通过观察样例可以发发现 \(n,m\)很小 \(k\)很大 因此这道题肯定是有规律的 通过打表我们可以发现 这…
题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/xyz32768/article/details/82952313 https://zhang-rq.github.io/2018/05/04/%E4%B9%9D%E7%9C%81%E8%81%94%E8%80%832018-%E7%A7%98%E5%AF%86%E8%A2%AD%E5%87%BBC…
一道技巧性非常强的计数题,历年WC出得最好(同时可能是比较简单)的题目之一. 题目传送门:洛谷P5206. 题意简述: 给定 \(n, y\). 一张图有 \(|V| = n\) 个点.对于两棵树 \(T_1=G(V, E_1)\) 和 \(T_2=G(V, E_2)\),定义这两棵树的权值 \(F(E_1, E_2)\) 为 \(y\) 的 \(G'=(V,E_1\cap E_2)\) 的联通块个数次方. 即 \(F(E_1, E_2) = y^{n - |E_1\cap E_2|}\)(因为…