学习android内核 -- 内存管理相关】的更多相关文章

Android内存管理: 1.当应用程序关闭以后,后台对应的进程并没有真正的退出(处于休眠状态,一般不占用系统CPU的资源),这是为了下次再启动的时候能快速启动. 2.当系统内存不够时,AmS会主动根据一定的优先规则退出优先级较低的进程. a:与linux内核的内存管理模块配合: 系统内存情况(是否足够)主要是Linux内核的内存管理所控制的,AmS只是从中起到为应用程序情况分配一个oom_adj值(-16到15,android中只用了0-15 :值越高越容易被回收),然后告诉Linux内核中注…
一 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU)把虚拟地址转换为物理 地址,通常以页为单位进行处理.MMU以页大小为单位来管理系统中的也表. 32位系统:页大小4KB 64位系统:页大小8KB 内核用相应的数据结构表示系统中的每个物理页: <linux/mm_types.h> struct page {} 内核通过这样的数据结构管理系统中所有的页,因此内核判断一个页是否空闲,谁有拥有这个页 ,拥有者可能是:用户空间进程.动态分配的内核数据.静态内核代码.页高速缓存…… 系统中…
void * kmalloc(size_t size, gfp_t gfp_mask); kmalloc()第一个参数是要分配的块的大小,第一个参数为分配标志,用于控制kmalloc()的行为. kmalloc()的底层依赖于__get_free_pages()来实现,分配标志的前缀GFP正好是这个底层函数的缩写. GFP_ATOMIC:在中断处理函数.底半部.tasklet.定时器处理函数以及URB完成函数中,在调用者持有自旋锁或读写锁时以及当驱动将current->state修改为非TASK…
如题目所示,为什么要称作“内核内存管理”,因为内核所需要的内存和用户态所需要的内存,这两者在管理上是不一样的. 这篇文章描述内核的内存管理,用户态的内存管理在以后的文章中讲述. 首先简单的说明一下下面的描述所需要的基础知识: 1,以下描述适用于32位系统 2,32位系统的线性地址(或称为逻辑地址,下面统称为线性地址)0-4G,其中的3G-4G的地址空间由内核使用.宏PAGE_OFFSET 为0xC0000000(3G),也是内核空间和用户空间的分界.但是linux内核并没有把整个1G空间用于线性…
百度网盘地址:https://pan.baidu.com/s/1jI4xZgE 我给起的书名叫做<深入理解Android虚拟机内存管理>.本书分为两个部分,前半部分主要是我对Linux0.11版内核的内存管理模块的深入分析:后半部分主要是对Android虚拟机Dalvik的垃圾回收机制的分析和内存管理的分析. 从2016年初开始研究Linux内核时的一脸懵逼,到现在的0.11版内核的内存管理机制应该算是非常熟悉了:2.4及以上版本的内存管理不敢说精通,但肯定是入门了.感谢自己的坚持,感谢自己对…
内存管理子系统可能是linux内核中最为复杂的一个子系统,其支持的功能需求众多,如页面映射.页面分配.页面回收.页面交换.冷热页面.紧急页面.页面碎片管理.页面缓存.页面统计等,而且对性能也有很高的要求.本文从内存管理硬件架构.地址空间划分和内存管理软件架构三个方面入手,尝试对内存管理的软硬件架构做一些宏观上的分析总结. 内存管理硬件架构 因为内存管理是内核最为核心的一个功能,针对内存管理性能优化,除了软件优化,硬件架构也做了很多的优化设计.下图是一个目前主流处理器上的存储器层次结构设计方案.…
XV6学习笔记(2) :内存管理 在学习笔记1中,完成了对于pc启动和加载的过程.目前已经可以开始在c语言代码中运行了,而当前已经开启了分页模式,不过是两个4mb的大的内存页,而没有开启小的内存页.接下来就可以从main.c的init函数开始 这里会和JOS做一个对比 首先看一下在执行main.c之前的物理内存分布 0x0000-0x7c00 引导程序的栈 0x7c00-0x7d00 引导程序的代码(512字节) 0x10000-0x11000 内核ELF文件头(4096字节) 0xA0000-…
概述 在android的开发中,要时刻主要内存的分配和垃圾回收,因为系统为每一个dalvik虚拟机分配的内存是有限的,在google的G1中,分配的最大堆大小只有16M,后来的机器一般都为24M,实在是少的可怜.这样就需要我们在开发过程中要时刻注意.不要因为自己的代码问题而造成OOM错误. JAVA的内存管理 大家都知道,android应用层是由java开发的,android的davlik虚拟机与jvm也类似,只不过它是基于寄存器的.因此要了解android的内存管理就必须得了解java的内存分…
slabtop cat /proc/slabinfo # name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedava…
一 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU)把虚拟地址转换为物理 地址,通常以页为单位进行处理.MMU以页大小为单位来管理系统中的也表. 32位系统:页大小4KB 64位系统:页大小8KB 内核用相应的数据结构表示系统中的每个物理页: <linux/mm_types.h> struct page {} 内核通过这样的数据结构管理系统中所有的页,因此内核判断一个页是否空闲,谁有拥有这个页 ,拥有者可能是:用户空间进程.动态分配的内核数据.静态内核代码.页高速缓存…… 系统中…
随着大家收货后会有很多乐粉晒内存,为啦方便大家,在网上搜集了一些相关Andriod管理的相关机制合理管理内存,整理下发个贴. 首先要知道Android系统是基于Linux 2.6内核开发的开源操作系统(linux是啥都不知道自己去百度吧),而linux系统的内存管理有其独特的动态存储管理机制.不过Android系统对Linux的内存管理机制进行了优化,Linux系统会在进程活动停止后就结束该进程,而Android把这些进程都保留在内存中,直到系统需要更多内存为止.这些保留在内存中的进程通常情况下…
[版权所有,转载请注明出处.出处:http://www.cnblogs.com/joey-hua/p/5597705.html ] Linux内核因为使用了内存分页机制,所以相对来说好理解些.因为内存分页就是为了方便管理内存. 说到内存分页,最根部的要属页目录表了,head.h中: extern unsigned long pg_dir[1024]; // 内存页目录数组.每个目录项为4 字节.从物理地址0 开始. 然后再看head.s: /* * head.s 含有32 位启动代码. * 注意…
一.几个基本的概念 1.存储器的金字塔结构 存储器从下之上依次是磁盘/flash.DRAM(内存).L2-cache.L1-cache.寄存器,越在上面的存储器访问速度越快,同时价格也越昂贵,每一级都可以看做是下一级的缓存,内存是磁盘的缓存,cache是内存的缓存. 2.地址空间 地址空间就是一个非负正数的有序集合,如果是连续的即线性地址空间,从硬件的角度看就是处理器所能访问的存储器空间,与地址线的位数相关,物理地址空间就是物理存储器的访问空间(按字节访问) 3.页 将物理内存和虚拟内存按页来划…
<Linux内核设计与实现>读书笔记(十二)- 内存管理   内核的内存使用不像用户空间那样随意,内核的内存出现错误时也只有靠自己来解决(用户空间的内存错误可以抛给内核来解决). 所有内核的内存管理必须要简洁而且高效. 主要内容: 内存的管理单元 获取内存的方法 获取高端内存 内核内存的分配方式 总结 1. 内存的管理单元 内存最基本的管理单元是页,同时按照内存地址的大小,大致分为3个区. 1.1 页 页的大小与体系结构有关,在 x86 结构中一般是 4KB或者8KB. 可以通过 getcon…
一.进程与内存     所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等.不过进程对这些内存的管理方式因内存用途不一而不尽相同,有些内存是事先静态分配和统一回收的,而有些却是按需要动态分配和回收的.对任何一个普通进程来讲,它都会涉及到5种不同的数据段: 代码段:代码段是用来存放可执行文件的操作指令,也就是说是它是可执行程序在内存中的镜像.代码段需要防止在运行时被非法修改,所以只准许读取操作,而不允许写入(修改)操作——它是不可写的…
内存管理 页 内核把物理页作为内存管理的基本单位.内存管理单元(MMU,管理内存并把虚拟地址转换为物理地址)通常以页为单位进行处理.MMU以页大小为单位来管理系统中的页表. 从虚拟内存的角度看,页就是最小单位. 32位系统:页大小4KB 64位系统:页大小8KB 在支持4KB页大小并有1GB物理内存的机器上.物理内存会被划分为262144个页. 内核用 struct page 结构表示系统中的每一个物理页. struct page { page_flags_t flags;   /* 表示页的状…
以下内容汇总自网络. 在早期的计算机中,程序是直接运行在物理内存上的.换句话说,就是程序在运行的过程中访问的都是物理地址. 如果这个系统只运行一个程序,那么只要这个程序所需的内存不要超过该机器的物理内存就不会出现问题,我们也就不需要考虑内存管理这个麻烦事了,反正就你一个程序,就这么点内存,吃不吃得饱那是你的事情了. 然而现在的系统都是支持多任务,多进程的,这样CPU以及其他硬件的利用率会更高,这个时候我们就要考虑到将系统内有限的物理内存如何及时有效的分配给多个程序了,这个事情本身我们就称之为内存…
在之前的一片文章我们说了OC中谓词操作:http://blog.csdn.net/jiangwei0910410003/article/details/41923507,从今天开始我们就来看一下OC中最难的一部分内容:内存管理 为什么说他难呢?因为内存如果需要我们程序员去管理的话,那个难度肯定是很大的,如果是Java,垃圾回收器会把这份工作给做了,我们不需要关心,但是就是因为如此,Android运行速度上会慢一下,原因很简单,Java的垃圾回收器有很多收集算法的,这个在回收的过程中是很浪费时间的…
[版权所有,转载请注明出处.出处:http://www.cnblogs.com/joey-hua/p/5598451.html ] 在上一篇的fork函数中,首先一上来就调用get_free_page为新任务的数据结构申请一页内存,在memory.c中: /* * 获取首个(实际上是最后1 个:-)空闲页面,并标记为已使用.如果没有空闲页面, * 就返回0. */ //// 取空闲页面.如果已经没有可用内存了,则返回0. // 输入:%1(ax=0) - 0:%2(LOW_MEM):%3(cx=…
内存管理概念: 1)物理内存 PC上有三条总线:数据总线.地址总线和控制总线.32位CPU的寻址能力是4GB个字节,用户最多可以使用4GB的真实物理内存.PC中很多设备都提供了自己的设备内存,例如显卡就提供了自己的显存.这部分内存会映射到PC的物理内存上,也就是读写这段物理地址,其实会读写的设备内存地址,而不会读写物理内存地址. 2)虚拟内存地址 Windows所有程序(包括Ring0层和Ring3层的程序)可以操作的都是虚拟内存.之所以称为虚拟内存,是因为对它的所有操作最终都会变成一系列对真实…
本文转载自:http://blog.csdn.net/coding__madman/article/details/51298718 版权声明:本文为博主原创文章,未经博主允许不得转载. 还是那张熟悉的老图:Linux内核子系统简介(由七个部分组成) Linux内存管理模型: 1. 内存管子系统职能: 1>  管理虚拟地址与物理地址的映射 2>  管理物理内存的分配 2. 地址映射管理 1> 虚拟地址空间分布: linux采用的是一种虚拟地址的管理方式,对于一个32位的处理器对于的内存空…
翻看 BEAM 虚拟机指令集的时候(在编译器源码目录下:lib/compiler/src/genop.tab),会发现有一些和内存分配/解除分配相关的指令,如下所示: allocate StackNeed Live allocate_heap StackNeed HeapNeed Live allocate_zero StackNeed Live allocate_heap_zero StackNeed HeapNeed Live test_heap HeapNeed Live init N d…
一.自动内存管理 1)概述 C++语言默认是没有提供自动内存管理的.使用者需要自己分配,自己释放.在cocos2d-x里提供了一个自动内存管理的方案.主要是通过CCObject来提供的,用户只要继承了CCObject,就可以通过调用autorelease()来告诉系统进行自动内存管理. 一般用法就是:    CCLayer* pLayer = CreateLayer(s_nActionIdx);    pLayer->autorelease(); 2)自动内存管理的实现 自动内存管理的实现原理大…
由于硬件的限制,内核不能对所有的页一视同仁.有些页位于内存中的特定物理地址上,所以,不能将其用于一些特别的任务.(关于内存分页机制可以查看:http://blog.csdn.net/dlutbrucezhang/article/details/10181535)由于存在这种限制,所以内核会把页划分为不同的区.内核使用区对具有相似特性的页进行分组.Linux必须处理如下两种由于硬件存在缺陷而引起的内存寻址问题:    1.一些硬件只能用某些特定的内存地址来执行 DMA    2.一些体系结构的内存…
      在内核里分配内存可不像在其他地方分配内存那么容易.造成这种局面的因素很多.从根本上讲,是因为内核本身不能像用户空间那样奢侈的使用内存.内核与用户空间不同,它不具备这种能力,它不支持简单便捷的内存分配方式.比如,内核一般不能睡眠.此外,处理内存分配错误对于内核来说也绝非是一件简单的事.正式由于这些限制,再加上内存分配机制不能太复杂,所以在内核中获取内存要比在用户空间复杂的多.       首先,我们讨论下内核中的分页机制.       内核把物理页作为内存管理的基本单位.尽管处理器的最…
本章节介绍例如以下: 1.C/C++内存管理机制 2.引用计数机制 3.自己主动释放机制 1.C/C++内存管理机制 相信仅仅要懂oop的都知道NEW这个keyword吧,这个通俗点说事实上就是创建对象,当然了,在.net其中还有另外一层意思.new 对象后他将在内存中分配一块内存空间,在JAVA和.net中有自己主动回收机制,由clr管理,不须要我们手动释放内存,你闲的蛋疼也能够自己去释放. 在C++中遵循一个机制,谁污染谁清理.所以就会成对出现   有new就得有delete 光说不练是浮云…
Android采取了一种有别于Linux的进程管理策略,有别于Linux的在进程活动停止后就结束该进程,Android把这些进程都保留在内存中,直到系统需要更多内存为止.这些保留在内存中的进程通常情况下不会影响整体系统的运行速度,并且当用户再次激活这些进程时,提升了进程的启动速度. 那Android什么时候结束进程?结束哪个进程呢?之前普遍的认识是Android是依据一个名为LRU(last recently used 最近使用过的程序)列表,将程序进行排序,并结束最早的进程.   其实安卓的内…
为什么在node中要担心node内存管理 使用JavaScript进行前端开发时几乎完全不需要关心内存管理问题,对于前端编程来说,V8限制的内存几乎不会出现用完的情况,v8在node中有着内存的限制(64位1.4GB:32位0.7GB),由于后端程序往往进行的操作更加复杂,并且长期运行在服务器不重启,如果不关注内存管理,导致内存泄漏,node对内存泄露十分敏感,一旦线上应用有成千上万的流量,哪怕是一个字节的内存泄露都会造成堆积,直到内存溢出. 查看内存使用情况与垃圾回收 我们可以使用proces…
转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼yuiopshared memory(共享内存) Android通过下面几个方式在不同的Process中来共享RAM: 每一个app的process都是从Zygote(受精卵)的进程中fork出来的.Zygote进程在系统启动并且载入通用的framework的代码与资源之后开始启动.为了启动一个新的程序进程,系统会fork Zygote进程生成一个新的process,然后在新的process中加载并运行app的代码.这使得大多数的RAM…
1.内存分配方式 内存分配方式有三种: (1)从静态存储区域分配.内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在.例如全局变量,static变量. (2) 在栈上创建.在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放.栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限. (3)从堆上分配,亦称动态内存分配.程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放…