hdu3480二维斜率优化DP】的更多相关文章

Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others) Total Submission(s): 2664    Accepted Submission(s): 1050 Problem Description Little D is really interested in the theorem of sets recently. There's a pro…
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5005 using namespace std; int n,k,a[N],bit[6005][605],len=0,ans=0; inline long long read(){ long long ans=0; char ch=getchar(); while(!isdigit(ch))ch=getcha…
先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HDU 3507 ($Print$ $Article$) 状态数$O(N)$,单次转移$O(N)$的做法还是比较容易的 令dp[i]表示打印完第$i$个单词的最小花费,$S[i]$表示$C[1]$到$C[i]$的前缀和,则转移方程为 \[dp[i]=min\{dp[j]+(S[i]-S[j])^{2}\…
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i]的形式,其中f[j]中保存了只与j相关的量.这样的DP方程我们可以用单调队列进行优化,从而使得O(n^2)的复杂度降到O(n). 可是并不是所有的方程都可以转化成上面的形式,比如dp[i]=dp[j]+(x[i]-x[j])*(x[i]-x[j]).如果把右边的乘法化开的话,会得到x[i]*x[j…
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) 首先注意到“把j+1~i的树都运到i的代价”不太方便表达,每次都暴力计算显然是无法承受的, 于是考虑前缀和优化,观察到先运到下一棵树那里,等一会再运下去,和直接运下去是等效的. 设sum[i]代表1 ~ i的树都运到i的代价, 于是根据前缀和思想,猜想我们可以用1 ~ r 的代价与 1 ~ l-1…
Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i-j-1+sum[i]-sum[j]-L)^2); 于是设g[i]=i+sum[i] g[j]=j+sum[j] c=1+L 则f[i]=min(f[j]+(g[i]-g[j]-c)^2) 方法一:决策单调性优化 证明决策单调性,假设 j 比 k 优 f[j]+(g[i]-g[j]-c)^2<f[k]…
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等…
题目链接:https://vjudge.net/problem/HDU-2829 Lawrence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4678    Accepted Submission(s): 2150 Problem Description T. E. Lawrence was a controversial figu…
题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i个的最大得分. 那么会推出来f[i][j]=max(f[k][j−1]+sum[i k]∗sum[1 k−1]或(sum[k i]∗sum[i+1 n]))然后我发现这个式子的复杂度非常高暂且不说.就光那个或的讨论就非常费劲. 于是想了想就放弃了这个念头.中规中矩的去想. 依照以往的思路设出状态f[…
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(DP\),顾名思义就是利用斜率相关性质对 \(DP\) 进行优化. 斜率优化通常可以由两种方式来理解,需要灵活地运用数学上的数形结合,线性规划思想. 对于这样形式的 \(dp\) 方程:\(dp[i]=Min/Max(a[i]∗b[j]+c[j]+d[i])\),其中 \(b\) 严格单调递增. 该方…