HUST 1606 Naive】的更多相关文章

预处理一下,然后o(1)询问. #include<cstdio> #include<cstring> #include<cmath> #include<string> #include<stack> #include<map> #include<algorithm> using namespace std; int x; ]; map<int, bool>m; void init() { m.clear();…
Description     约翰遭受了重大的损失:蟑螂吃掉了他所有的干草,留下一群饥饿的牛.他乘着容量为C(1≤C≤50000)个单位的马车,去顿因家买一些干草.  顿因有H(1≤H≤5000)包干草,每一包都有它的体积Vi(l≤Vi≤C).约翰只能整包购买, 他最多可以运回多少体积的干草呢? Input     第1行输入C和H,之后H行一行输入一个Vi. Output       最多的可买干草体积. Sample Input 7 3 //总体积为7,用3个物品来背包 2 6 5 The…
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患…
1.前言: Naive Bayes(朴素贝叶斯)是一个简单的多类分类算法,该算法的前提是假设各特征之间是相互独立的.Naive Bayes 训练主要是为每一个特征,在给定的标签的条件下,计算每个特征在该标签的条件下的条件概率.最后用这个训练后的条件概率去预测. 由于我使用的Spark的版本是1.3.0.它所包含的Naive Bayes是 Multinomial NB.截至到我写该篇文章,最新的Spark1.6.0包含multinomial naive Bayes and Bernoulli na…
1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find o…
Microsoft朴素贝叶斯是SSAS中最简单的算法,通常用作理解数据基本分组的起点.这类处理的一般特征就是分类.这个算法之所以称为“朴素”,是因为所有属性的重要性是一样的,没有谁比谁更高.贝叶斯之名则源于Thomas Bayes,他想出了一种运用算术(可能性)原则来理解数据的方法.对此算法的另一个理解就是:所有属性都是独立的,互不相关.从字面来看,该算法只是计算所有属性之间的关联.虽然该算法既可用于预测也可用于分组,但最常用于模型构建的早期阶段,更常用于分组而不是预测某个具体的值.通过要将所有…
Naive Bayes: 简单有效的常用分类算法,典型用途:垃圾邮件分类 假设:给定目标值时属性之间相互条件独立 同样,先验概率的贝叶斯估计是 优点: 1. 无监督学习的一种,实现简单,没有迭代,学习效率高,在大样本量下会有较好的表现. 2. 对分类器的学习情况有着比较简单的解释,可以简单的通过查询学习时计算的一些概率值来了解其分类原理. 缺点: 1. 假设太强--假设特征条件独立,在输入向量的特征条件有关联的场景下并不适用. #################################W…
#HUST deb http://mirrors.hust.edu.cn/ubuntu/ xenial main restricted universe multiverse deb http://mirrors.hust.edu.cn/ubuntu/ xenial-security main restricted universe multiverse deb http://mirrors.hust.edu.cn/ubuntu/ xenial-updates main restricted u…
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值.某个词对文章的重要性越高,它的TF-IDF值就越大. (1) 出现次数最多的词是----"的"."是"."在"----这一类最常用的词.它们…
1017 - Exact cover Problem's Link:   http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 analyse: 初学DLX. 这是DLX处理的最简单的问题,也是模板题. Time complexity: O(n*d) Source code:  #include <stdio.h> #include <string.h> #…