【LOJ#6060】Set(线性基)】的更多相关文章

[LOJ#6060]Set(线性基) 题面 LOJ 题解 好题啊QwQ. 首先\(x1\oplus x2=s\)是定值.而\(s\)中假设某一位上是\(1\),则\(x1,x2\)上必定有一个是\(1\),另一个是\(0\),所以对答案没有影响.反过来,如果\(s\)上某一位为\(0\),则要么都是\(0\),要么都是\(1\). 所以我们在考虑构造线性基的时候,优先考虑\(0\)的位,再考虑\(1\)的位. 那么现在只需要令\(x2\)在原本在\(s\)是\(0\)的位置上取到尽可能多的\(1…
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我们分两部分贪心:(注意 $ tot $ 表示左右元素的异或和) 首先我们要让总和最大的话,我们只需要讨论 $ tot $ 的某一位为0的情况(如果为1,那么不管怎么分配两边的数都只能并且一定有一个数,使它这一位上含有1).对于 $ tot $ 的某一位为0的情况,我们肯定贪心的让两边都在这一位上含有…
LOJ BZOJ 明明做过一道(最初思路)比较类似的题啊,怎么还是一点思路没有. 记所有元素的异或和为\(s\),那么\(x_1+x_2=x_1+x_1\ ^{\wedge}s\). \(s\)是确定的.考虑从高位到低位枚举\(s\)的二进制位.若当前位\(s\)为\(1\),则\(x_1\)是\(0\)是\(1\)贡献相同:否则\(x_1\)这一位必须是\(1\)(如果能是\(1\)).这样可以满足\(x_1+x_2\)最大. 对于\(x_1\)最小的要求,就是在\(s\)为\(1\)时,\(…
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 对于每个询问,只需要暴力合并两个线性基即可 每个点只会被加到logn个线性基里,所以总复杂度为O(nlogn60 + q60*2) 然后我写了句memset(b,0,sizeof 0)...被卡了1h... 代码 #include<cstdio> #include<vector> #…
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直接是 dis[ u ] ^ dis[ v ] ^ w[ i ] 就行了(其中 u , v 是边的两端, i 是边的标号). 再看一下题,发现一开始一定是连通的.所以剩下的就和 bzoj 4184 shallot 一样用线性基就行了. 因为有 1000 位,所以用 bitset . 线性基求最大值原来…
题目:https://loj.ac/problem/2978 题解:https://www.cnblogs.com/Paul-Guderian/p/10248782.html 第 i 个数的 bitset 的第 j 位表示 i 是否含有奇数个 “第 j 个质数” . 想到用 bitset ,就开始考虑怎样 DP …… 其实是求选一些数,使得它们的 bitset 异或和为 0 .所以求线性基,答案就是 2R-L+1-线性基大小 . 然后考虑根号分治. 大于 \( \sqrt{n} \) 的质数,每…
题意 题目链接 Sol 线性基+线段树分治板子题.. 调起来有点自闭.. #include<bits/stdc++.h> #define fi first #define se second #define pb push_back #define bit bitset<B + 1> using namespace std; const int MAXN = 501, B = 1001, SS = 4001; inline int read() { char c = getchar…
题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基,从高到低位枚举i,如果base[i]在第j位(j<i)有值,那么Xor一下base[j].(保证每一列只有一个1) 比如 1001(3)与0001(0),同时选0,3只比3要小:重构后是 1000(3)和0001(0),这样同时选0,3比只选0或3都要大. 这样将K二进制分解后就可以直接对应上线性基…
题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 \(T\) 在 \(S\) 的所有非空子集的不同的异或和中,其异或和 \(T_1\ xor\ T_2\ xor\ ... \ xor\ T_{|T|}\) 是第 \(k\) 小的. 输入格式 第一行一个数 \(n\). 第二行 \(n\) 个数,表示集合 \(S\). 第三行一个数 \(m\),表示…
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\)的.(这就有\(70\)分?) 因为最开始的图是连通的,可以先求一个\(dis[i]\)表示\(1\)到\(i\)的异或和.每次加边会形成环,就是在线性基中插入一个元素. 因为有撤销,所以线段树分治就好了.线段树上每个节点开一个线性基.同一时刻只需要\(\log\)个线性基的空间. 复杂度\(O(\…