目录 1. 核心贡献 2. 实验设置 2.1. 任务设置 2.2. 网络设置 3. 实验结果 4. 启发 论文:How transferable are features in deep neural networks? 1. 核心贡献 我们都知道,深度网络中的特征是逐渐特化的.如果我们将一个深度网络中的高层特征,迁移用于另一个任务,那么这个新任务的表现很有可能不理想. 这篇文章讨论的就是深度网络中特征的可迁移性,通过实验有以下3点发现: 越高层的特征越难以迁移. 迁移后网络的参数联动性被打破,…
数据增强(Data augmentation) 预处理(Pre-processing) 初始化(Initializations) 训练中的Tricks 激活函数(Activation functions) 正则化(Regularizations) 画图洞察数据 集成学习(Ensemble) 数据增强 深度学习需要大量的数据,当数据集不够大时,可以利用合理手段,基于已有数据,"创造"新的数据.本部分针对图像处理 对于图像而言,可以随机选择以下手段: 翻转 旋转 拉伸 裁剪 颜色抖动 光学…
一.正则化介绍 问题:为什么要正则化? NFL(没有免费的午餐)定理: 没有一种ML算法总是比别的好 好算法和坏算法的期望值相同,甚至最优算法跟随机猜测一样 前提:所有问题等概率出现且同等重要 实际并非如此,具体情况具体分析,把当前问题解决好就行了 不要指望找到放之四海而皆准的万能算法! 方差和偏差: 过拟合与欠拟合: 训练集和测试集 机器学习目标: 特定任务上表现良好的算法 泛化能力强-->验证集上的误差小,训练集上的误差不大(不必追求完美,否则可能会导致过拟合)即可. 如何提升泛化能力: (…
作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接! 作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载请附上博文链接! 作者:Double_V_ 来源:CSDN 原文:https://…
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同. 记号:  i,o,k,p,s i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size input size,卷积/反卷积输出大小 output size output size,卷积/反卷积核大小 kerne…
转载自:https://www.jianshu.com/p/bf8749e15566 今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的. 首先,之前的文章也提到过了,卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling). 其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作. 而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x…
End to end:指的是输入原始数据,输出的是最后结果,应用在特征学习融入算法,无需单独处理. end-to-end(端对端)的方法,一端输入我的原始数据,一端输出我想得到的结果.只关心输入和输出,中间的步骤全部都不管. 端到端指的是输入是原始数据,输出是最后的结果,原来输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取图像的一些关键特征,这实际就是就一个降维的过程. 那么问题来了,特征…
这一个多周忙别的事去了,忙完了,接着看讲义~ 这章讲的是深度网络(Deep Network).前面讲了自学习网络,通过稀疏自编码和一个logistic回归或者softmax回归连接,显然是3层的.而这章则要讲深度(多层)网络的优势. Deep Network: 为什么要使用深度网络呢?使用深度网络最主要的优势在于,它能以简洁的方式来表达比浅层网络大得多的函数集合.正式点说,可以找到一些函数,它们能够用k层网络简洁的表达出来(这里的简洁指的是使用隐层单元的数目与输入单元数目是多项式关系),但是对一…
前言:今天他给大家带来一篇发表在CVPR 2017上的文章. 原文:LBCNN 原文代码:https://github.com/juefeix/lbcnn.torch 本文主要内容:把局部二值与卷积神经网路结合,以削减参数,从而实现深度卷积神经网络端到端的训练,也就是未来嵌入式设备上跑卷积效果将会越来越好. 主要贡献: 提出一种局部二值卷积(LBC)可以用来替代传统的卷积神经网络的卷积层,这样设计的灵感来自于局部二值模式(LBP).LBC主要由一个预先定义好的稀疏二值卷积滤波器,这个滤波器在整个…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…