12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematics Behind Large Margin classification 向量内积 假设有两个向量\(u=\begin{bmatrix}u_1\\u_2\\ \end{bmatrix}\),向量\(v=\begin{bmatrix}v_1\\v_2\\ \end{bmatrix}\),其中向量的内积…
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We alr…
Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We al…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin Intuition 人们有时将支持向量机看作是大间距分类器.在这一部分,我将介绍其中的含义,这有助于我们直观理解 SVM 模型的假设是什么样的.以下图片展示的是SVM的代价函数: 最小化SVM代价函数的必要条件 如果你有一个正样本,y=1,则只有在z>=1时代价函数\(cost_1(z)\)才等于0.…
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常大时,括号括起来的部分就接近于0,所以就变成了: 非常有意思的是,在最小化 1/2*∑θj^2的时候,最小间距也达到最大.原因如下: 所以: 即:如果我们要最小化1/2*∑θj^2,就要使得||θ||尽量小,而当||θ||最小时,又因为,所以p(i)最大,即间距最大. 注意:C可以看成是正则项系数λ…
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果.监督学习的训练集要求包括输入输出,也可以说是特征和目标.训练集中的目标是由人标注的.常用于:训练神经网络.决策树.回归分析.统计分类 无监督学习:输入数据没有被标记,也没有确定的结果.样本数据类别未知,需要根据样本间的相似性对样本集进行分类,试图使类内差距最小化,…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述支持向量机,事实上,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上的支持向量机. 逻辑回归公式 逻辑回归公式如下图所示, 可以看出逻辑回归公式由两个变量x和\(\theta\)构成,其中x表示输入的数据,而\(\theta\)是可学习的变量,如图中右半部分所示,其图像坐标轴横轴为x.\(h…
本篇我们讨论如何运行或者运用SVM. 在高斯核函数之外我们还有其他一些选择,如:多项式核函数(Polynomial Kernel)字符串核函数(String kernel)卡方核函数( chi-square kernel)直方图交集核函数(histogram intersection kernel)等等... 这些核函数的目标也都是根据训练集和地标之间的距离来构建新特征,这些核函数需要满足Mercer's 定理,才能被支持向量机的优化软件正确处理. 多类分类问题 假设我们利用之前介绍的一对多方法…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landmark)如图所示为\(l^{(1)},l^{(2)},l^{(3)}\),设核函数为 高斯函数 ,其中设预测函数y=1 if \(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\ge0\) 在实际中需要用 很多标记点 ,那么如何选取 标记点(lan…