[HAOI2018]染色】的更多相关文章

BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times s}}{(m-K)!\times (s!)^K}\times C(m,K)$ 然后二项式反演一下,得到恰好的数量:$ans_i=\sum\limits_{j=i}^n (-1)^{j-i}\times a_i\times C(j,i)$ 然后展开一下就可以得到两个多项式:$A_i=\frac{m!…
BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #include<set> #include<map> #include<iostream> us…
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可…
[LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色至少放\(S\)种 有\(m\)种颜色,那么要乘上\(C_m^i\). 然后这\(n\)个位置分为\(i+1\)个部分:被钦定的\(i\)种颜色,每个\(S\)个:剩下\(m-i\)种颜色,一共\(n-iS\)种颜色,可以看作可重的全排列数,那么就有\(\frac{n!}{…
[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C 会产生 \(W_k\)的愉悦度. 求对于所有可能的染色方案, 他能获得的愉悦度的和.答案对 1004535809 取模 分析 显然颜色数量不超过\(tot=\min(m,\frac{n}{S})\) 我们需要求出现了\(S\)次的颜色有\(i\)种的方案数.这个东西不太好求,考虑容斥,求出现了\(S…
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\dfrac 1 {(n-Sx)!} \] \(f(x)\) 钦定有\(x\)种颜色出现了恰好\(S\)的方案 然后推一下恰好有\(x\)种颜色出现了恰好\(S\)次的方案\(g(x)\) .推导在下下面. 最后的答案是\(\sum w_i g(i)\) 推导: 显然颜色种类不会超过\(L=\lfloo…
题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$n\leq 10^7,m\leq 10^5,S\leq 150,0\leq W_i\leq 1004535808$ 首先是要推式子的. 首先我们知道,出现次数恰为$S$次的至多$up=\min(m,\frac{n}{S})$种. 设恰好出现$S$次的颜色至少$i$种,则 $$f_i=C_m^i*\f…
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i]\)的贡献 \[\sum_{k=0}^{lim}W[k]C_M^kC_N^{kS}\frac{(kS)!}{(S!)^k}\times Others\] \(Others\)是其他的东西,先考虑前面这堆东西的意义. 我们枚举恰好出现了\(S\)次的颜色个数\(k\),那么,选定这些颜色的方案数 首…
bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\)的收益. 求所有染色方案的收益之和膜\(1004535809\). sol 整行公式太大了放不下就只能用行内公式了qaq 首先设\(N=\min(m,\lfloor\frac ns\rfloor)\),这是出现了\(S\)次的颜色种数的上界. 设\(F(i)\)表示染色后出现了\(S\)次的颜色有\…
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 \(1…