题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为g的常数项为零,所以1-4g的常数项为1,的常数项也为1,的常数项就为零,就跑不了逆元,所以舍掉. 最终,跑一个多项式开根和一个多项式求逆就行. CODE 大常数TLE的代码, 自己优化吧(逃 #include<cstdio> #include<iostream> #include&l…
题意 链接 Sol 生成函数博大精深Orz 我们设\(f(i)\)表示权值为\(i\)的二叉树数量,转移的时候可以枚举一下根节点 \(f(n) = \sum_{w \in C_1 \dots C_n} \sum_{j=0}^{n-w} f(j) f(n-w-j)\) 设\(T =n-w\),后半部分变为\(\sum_{j=0}^T f(j) f(T-j)\),是个标准的卷积形式. 对于第一重循环我们可以设出现过的数的生成函数\(C(x)\) 可以得到\(f = C * f * f + 1\),+…
传送门 设生成函数\(C(x) = \sum\limits_{i=0}^\infty [\exists c_j = i]x^i\),答案数组为\(f_1 , f_2 , ..., f_m\),\(F(x) = \sum\limits_{i=1}^m f_ix^i + 1\) 注意到选出一棵合法的二叉树,只需要选择一个合法的权值作为根的权值,选择一棵合法的二叉树(可以为空)作为根的左儿子,选择一棵合法的二叉树(可以为空)作为根的右儿子即可.那么有\(F(x) - 1 = F(x) * F(x) *…
传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多项式$B$,求多项式$A$满足$A^2\equiv B\pmod{x^n}$(和多项式求逆一样这里需要取模,否则$A$可能会有无数项) 假设我们已经求出$A'^2\equiv B\pmod{x^n}$,考虑如何计算出$A^2\equiv B\pmod{x^{2n}}$ 首先肯定存在$A^2\equiv B…
CF438E The Child and Binary Tree Description 给一个大小为\(n\)的序列\(C\),保证\(C\)中每个元素各不相同,现在你要统计点权全在\(C\)中,且点权和为\(m\)的二叉树个数,并对\(998244353\)取模. \(n,m \le 10^5\) Solution \(998244353\)?这很多项式...... 总之先颓柿子好了. 令\(f_n\)表示权值和为\(n\)的二叉树个数,\(g_n\)表示权值\(n\)是否出现在\(C\)中…
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权值为i的二叉树的个数. 两棵树不同当且仅当树的形态不一样或者是树的某个点的点权不一样 分析 设\(c(i)\)表示数值i是否在集合中.\(f(i)\)表示权值为i的二叉树的个数.那么 \[f(n)=\sum_{i=1}^n c(i) \sum_{j=0}^{n-i} f(j)f(n-i-j)\] 其…
题目传送门 传送点I 传送点II 传送点III 题目大意 每个点的权值$c\in {c_{1}, c_{2}, \cdots, c_{n}}$,问对于每个$1\leqslant s\leqslant m$有多少种不同的这样的有根二叉树满足所有点的点权和等于$s$. 先考虑一下怎么用dp来做. 设$f_{n}$表示点权和为$n$的满足条件的二叉树的个数,那么有: $f_{n} = \sum_{c \in C}\sum_{i = 0}^{n - c}f_{i}f_{n - c - i}$ 初值满足$…
思路 设F(x)的第x项系数为权值和为x的答案 题目中要求权值必须在集合中出现,这个不好处理,考虑再设一个C,C的第x项如果是1代表x出现在值域里,如果是0,代表x没有出现在值域里,然后由于二叉树可以分别对左右子树处理,所以 \[ F_k=\sum_{i=1}^k C_i \sum_{j=0}^{k-i}F_j F_{k-i-j} \] \[ F_0=1 \] 可以看出这是一个卷积的形式 \[ F=1+C*F*F \] 然后解一个一元二次方程 \[ F=\frac{1 \pm \sqrt{1-4…
题目链接:洛谷 CF原网 题目大意:有 $n$ 个互不相同的正整数 $c_i$.问对于每一个 $1\le i\le m$,有多少个不同形态(考虑结构和点权)的二叉树满足每个点权都在 $c$ 中出现过,且点权和为 $i$.答案对 $998244353$ 取模. $1\le n,m\le 10^5$. 首先考虑DP,$f_i$ 表示点权和为 $i$ 的树数. 那么枚举根节点的点权和两棵子树的点权和 $f_k=\sum\limits^n_{i=1}c_i\sum\limits^{k-c_i}_{j=0…