FFT教你做乘法(FFT傅里叶变换)】的更多相关文章

题目来源:https://biancheng.love/contest/41/problem/C/index FFT教你做乘法 题目描述 给定两个8进制正整数A和B(A和B均小于10000位),请利用离散傅里叶变换计算A与B的乘积. 输入 多组测试数据(组数不超过100)每组测试数据只有一行,包含两个正整数A和B. 输出 对于每组数据,输出一行,为A和B的乘积. 输入样例 1 7 2 17 输出样例 7 36 解题思路:推荐博客(有助于理解FFT):http://blog.jobbole.com…
目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - 任意模数 NTT@ @三模数 NTT@ @拆系数 fft (mtt)@ @8 - 例题与应用@ @分治 FFT@ @多维卷积@ @循环卷积@ @多项式求逆,除法与取模@ @多点求值与快速插值@ @多项式开方,对数,指数,三角与幂函数@ @0 - 参考资料@ Miskcoo's Space 的讲解…
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.net/leo_h1104/article/details/51615710 题解 不写点什么也不好,我就简单的说一下吧. 我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换). 一个多项式有很两种表示方法: 法一:\(f(x)=\sum_{i=0}^n A_i*x^i\) 法二:图像…
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$…
转载来源:https://blog.csdn.net/zj_whu/article/details/72954766 #include <cstdio> #include <cmath> #include <complex> #include <cstring> using namespace std; const double PI(acos(-1.0)); typedef complex<double> C; const int N = (1…
链接:https://ac.nowcoder.com/acm/contest/392/B来源:牛客网 华华教月月做数学 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit IO Format: %lld 题目描述 找到了心仪的小姐姐月月后,华华很高兴的和她聊着天.然而月月的作业很多,不能继续陪华华聊天了.华华为了尽快和月月继续聊天,就提出帮她做一部分作业. 月月的其中一项作业是:给定正整数A.B.P,求ABmodPABmodP的值.华华…
NC23046 华华教月月做数学 题目 题目描述 找到了心仪的小姐姐月月后,华华很高兴的和她聊着天.然而月月的作业很多,不能继续陪华华聊天了.华华为了尽快和月月继续聊天,就提出帮她做一部分作业. 月月的其中一项作业是:给定正整数 \(A\) .\(B\) .\(P\) ,求 \(A^B\mod P\) 的值.华华觉得这实在是毫无意义,所以决定写一个程序来做.但是华华并不会写程序,所以这个任务就交给你了. 因为月月的作业很多,所以有T组询问. 输入描述 第一行一个正整数 \(T\) 表示测试数据组…
背景 项目上需要做UWP的自动安装包,在以前的公司接触的是TFS来做自动build. 公司要求用Jenkins来做,别笑话我,之前还真不晓得这个东西. 会的同学请看一下指出错误,不会的同学请先自行脑补,我们一步一步的来. 首先我们准备2个安装包,Jenkins,NuGet 都下载最新的好了. 1. 安装Jenkins,下一步下一步.安装好了会自动浏览器跳转到http://localhost:8080/ 如下图 按照提示去C:\Program Files (x86)\Jenkins\secrets…
3分钟教你做一个iphone手机浏览器 第一步:新建一个Single View工程: 第二步:新建好工程,关闭arc. 第三步:拖放一个Text Field 一个UIButton 和一个 UIWebView . Text Field 的title 属性设置为 http:// .UIButton 的title属性设置为 go . 布局如图: 第四步:为Text Field 和  UIWebView 连线,插座变量分别命名为  textUrl  和 webRequest.为UIButton 连线 .…
手把手教你做iOS推送 http://www.cocoachina.com/industry/20130321/5862.html…
iOS5新特性:强大的Core Image(教你做自己的美图秀秀))       iOS5给我们带来了很多很好很强大的功能和API.Core Image就是其中之一,它使我们很容易就能处理图片的各种效果,色彩啊,曝光啊,饱和度啊,变形啊神马的.可惜苹果一直没能完善官方文档,也没有推出示例代码,所以国内很多同学可能还没有开始使用.但国外的大神们已经证明这是个相当强悍的框架,不仅功能强大,而且可以直接使用GPU,效率奇高,甚至可以实时的对视频进行渲染.下面让我们来看看,如何具体使用它:首先你需要导入…
现如今,无论是客户端还是移动端,无论是游戏登陆还是社交平台登陆,无处不在的“登陆”.那么你知道怎么制作吗?今天就为你娓娓道来: 用户登录 在各大信息管理系统中,登录功能是必不可少的,他的作用就是验证用户的身份,判断用户是否是本站的会员,只有会员才能访问当前系统 登录的实现步骤: 1.用户填写账号和密码,提交到后台2.后台获取到账号和密码后,将其发送到数据库中进行查询3.查询结果如果为null,说明用户填写的账号或者密码有误,应该回到登录页面并提示用户重新输入4.查询结果如果不为null,说明用户…
临床预测模型也是大家比较感兴趣的,今天就带着大家看一篇临床预测模型的文章,并且用一个例子给大家过一遍做法. 这篇文章来自护理领域顶级期刊的文章,文章名在下面 Ballesta-Castillejos A, Gómez-Salgado J, Rodríguez-Almagro J, Hernández-Martínez A. Development and validation of a predictive model of exclusive breastfeeding at hospital…
[传送门:BZOJ2179&caioj1450] 简要题意: 给出两个超级大的整数,求出a*b 题解: Rose_max出的一道FFT例题,卡掉高精度 = =(没想到BZOJ也有) 只要把a和b的每一位当作是多项式的系数,然后做FFT就好了 然后将答案取下来,进行进位的操作,最后输出就好了 参考代码: #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #i…
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的文字好像有点多呀qwq啊话痨是真的qwq) [正题] 一些预备知识(有了解的就可以直接跳啦,mainly from 算导) fft的话,用来解决与多项式乘法有关的问题 关于多项式 一个以x为变量的多项式定义在一个代数域$F$上,将函数$A(x)$表示为形式和: $A(x) = \sum\limits…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
学会了FFT之后感觉自己征服了世界! 当然是幻觉... 不过FFT还是很有用的,在优化大规模的动规问题的时候有极大效果. 一般比较凶残的计数动规题都需要FFT(n<=1e9). 下面是高精度乘法的板子. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<ctime> #include<cmath> #include&l…
A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 26874    Accepted Submission(s): 7105 Problem Description Calculate A * B.   Input Each line will contain two integers A and B.…
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_n=\sum\limits_{i=0}^n A_iB_{n-i} \] 基本思路为先将系数表达 -> 点值表达 \(O(nlogn)\) 随后点值 \(O(n)\) 进行乘法运算 最后将点值表达 -> 系数表达 \(O(nlogn)\) 代码 #include<cstdio> #inc…
题意:大数乘法 思路:FFT模板 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81…
题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<complex> #include<algorithm> using namespace std; #…
题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. #include<bits/stdc++.h> using namespace std; const int MAXN=3000100; const double…
题目戳我 一道模板题 自己尝试证明了大部分... 剩下的还是没太证出来... 所以就是一个模板放在这里 以后再来补东西吧.... #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<complex> #include<algorithm> using namespace std; #…
https://www.luogu.org/problem/show?pid=3803 题目背景 这是一道模版题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1…
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项系数. 第三行 m+1m+1 个整数,表示第二个多项式的 00 到 mm 次项系数. 输出格式 一行 n+m+1n+m+1 个整数,表示乘起来后的多项式的 00 到 n+mn+m 次项系数. 样例一 input 1 2 1 2 1 2 1 output 1 4 5 2 explanation (1+…
自己整理出来的模板 存在的问题: 1.多项式求逆常数过大(尤其是浮点数FFT) 2.log只支持f[0]=1的情况,exp只支持f[0]=0的情况 有待进一步修改和完善 FFT: #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef double db; ); ,M=1e6+,mod=; int n,m,n2,a[N]; int Pow(int x,int p) { ; ,x=(ll)x*x%mod…
题意:给定两个 \(n\) 元环,环上每个点有权值,分别为 \(x_i, y_i\).定义两个环的差值为 \[\sum_{i=0}^{n-1}{(x_i-y_i)^2}\] 可以旋转其中的一个环,或者将其中一个环的每种权值加上一个数.求最小化的差值. Solution: 加数只需要加在一个上面即可(假设可以为负),那么差值可以写成 \[\sum_{i=0}^{n-1}{(x_i-y_{i+k}+c)^2}\] 我们可以将差值定义为旋转位数\(k\)与加数\(c\)的函数,即 \(f(k,c)\)…
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inline int read() { char c=getchar();int x=0,f=1; while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=get…
题意:给定 \({q_i}\),求 \[E_i = \sum_{i<j}{\frac{q_j}{(j-i)^2}} - \sum_{i>j}{\frac{q_j}{(j-i)^2}}\] Solution: 我们令 \[p_i = \frac{1}{(j-i)^2}\] 那么很容易将\(E_i\)处理为卷积形式 \[E_i = \sum_{i<j}{p_{j-i}q_j} - \sum_{i>j}{p_{i-j}q_j}\] 可以暴力地把两边分开处理,不需要的区域直接置为\(0\)…
题意:有\(n\)个正整数,求随机选取一个3组合,能构成三角形的概率. Solution: 很容易想到构造权值序列,对其卷积得到任取两条边(可重复)总长度为某数时的方案数序列,我们希望将它转化为两条边不可重复,并去掉顺序.不妨设给定的 \(N\) 个正整数的集合为 \(S\),卷积后的权值序列为 \(\{c_i\}\) ,那么我们对每一个 \(x \in S\), 对 \(c_x\) 减去 \(1\) 即可. 不妨设选出的组合为 \((i,j,k)\),假设 \({x_i}\) 为已经排序的长度…