NP-Completeness理解】的更多相关文章

在使用numpy时,难免会用到随机数生成器.我一直对np.random.seed(),随机数种子搞不懂.很多博客也就粗略的说,利用随机数种子,每次生成的随机数相同. 我有两个疑惑:1, 利用随机数种子,每次生成的随机数相同.这是什么意思? 2,随机数种子的参数怎么选择?在别人的代码中经常看到np.random.seed(Argument),这个参数不一样,有的是0,有的是1,当然还有其他数.那这个参数应该怎么选择呢? 通过对别的博客的理解,我做了以下几组实验: 1.以np.random.rand…
说明:np ----> numpy       tf ----> tensorflownp.stack(arrays, axis=0) np.stack(arrays, axis=0) ---- 同样也适用于tf.stack() numpy 和 tensorflow 都有 stack() 函数,该函数主要是用来提升维度. 在只提供数组(张量)和axis参数的前提下,  两者的使用方法和结果一样,原理一样,所以这里用numpy做演示. 假设要转变的张量数组arrays的长度为N,其中的每个张量数…
python指定概率随机取值参考如下: 下面是利用 np.random.choice()指定概率取样的例子: np.random.seed(0) p = np.array([0.1, 0.0, 0.7, 0.2]) index = np.random.choice([0, 1, 2, 3], p = p.ravel()) 这意味着你可以以下面的概率分布取到index所对应的数值:P(index=0)=0.1,P(index=1)=0.0,P(index=2)=0.7,P(index=3)=0.2…
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgrid 与np.ogrid的目的都是为创建一个格栅区域,而mgrid返回的是相同维度的数组,ogrid仅返回本维度的数组,而创建格栅区域可以i这样理解:如果要确定一点(x,y),则对于mgrid返回值而言,首先取出所有数组的第x行,然后再第x行取出第y个数字,因此,mgrid的第一个数组x,每行都是相…
P是一类可以通过确定性图灵机(以下简称 图灵机)在多项式时间(Polynomial time)内解决的问题集合. NP是一类可以通过非确定性图灵机( Non-deterministic Turing Machine)在多项式时间(Polynomial time)内解决的决策问题集合. P是NP的子集,也就是说任何可以被图灵机在多项式时间内解决的问题都可以被非确定性的图灵机解决.   接下来说说NP 里最难得问题 NP-complete. 其定义如下, 如果一个决策问题 L 是 NP-comple…
举三个例子,就能清楚的看到 np.nonzero() 这个函数返回值的意义 一. #例1 一维数组 import numpy as np a = [0,1,2,0,3,0] b = np.nonzero(a) print(b) 输出: (array([1, 2, 4], dtype=int64),) nonzero()用于得到数组中非零元素的位置(数组索引),如上例中数组a中索引1,2,4中的元素不为0,即返回值 二. #例2 二维数组 import numpy as np a =[[1,2,3…
本系列文章将介绍Docker的有关知识: (1)Docker 安装及基本用法 (2)Docker 镜像 (3)Docker 容器的隔离性 - 使用 Linux namespace 隔离容器的运行环境 (4)Docker 容器的隔离性 - 使用 cgroups 限制容器使用的资源 (5)Docker 网络 1. 基础知识:Linux namespace 的概念 Linux 内核从版本 2.4.19 开始陆续引入了 namespace 的概念.其目的是将某个特定的全局系统资源(global syst…
一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相当于一种类型,这样对于元素的访问效率是很低的. python中一切皆引用,每一个int对象都要用指针指一下再用int存储一下,浪费空间也浪费时间.当读取某个元素的时候需要先读取引用,再根据引用指向的内存地址来读取int值. numpy相当于完全采用了C语言那套数组机制. 二.numpy原则 一切皆一…
原文地址http://www.matrix67.com/blog/archives/105 这或许是众多OIer最大的误区之一.    你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的NPC问题.他们没有搞清楚NP问题和NPC问题的概念.NP问题并不是那种“只有搜才行”的问题,NPC问题才是.好,行了,基本上这个误解已经被澄清了.下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题…
理解什么是字符编码? 计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机在设计时采用8个比特(bit)作为一个字节(byte),所以,一个字节能表示的最大的整数就是255(二进制11111111=十进制255),如果要表示更大的整数,就必须用更多的字节.比如两个字节可以表示的最大整数是65535,4个字节可以表示的最大整数是4294967295. 那么1字节能够转换的最大二进制位为:2**64-1 ASCII编码: 一个英文字母占一个字节空间 其实ascii编码就…