Python 死锁现象】的更多相关文章

import time from threading import Thread,Lock,RLock def f1(locA,locB): locA.acquire() print('f1>>1号抢到了A锁') time.sleep(1) locB.acquire() print('f1>>1号抢到了B锁') locB.release() locA.release() def f2(locA,locB): locB.acquire() print('f2>>2号抢到了…
一:死锁现象和递归锁 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁 from threading import Thread,Lock,RLock import time # mutexA=Lock() # mutexB=Lock() mutexB=mutexA=RLock() class Mythead(Thread):…
9.94 守护线程与守护进程的区别 1.对主进程来说,运行完毕指的是主进程代码运行完毕2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕​详细解释:1.主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束,2.主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收).因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程…
一 死锁现象 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁 from threading import Thread from threading import Lock import time # 实例化两把不同的锁 mutexA = Lock() mutexB = Lock() class MyThread(Threa…
Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 1. 死锁现象 2. 递归锁 3. 信号量 4. GIL全局解释器锁 1. 背景 2. 加锁的原因: 3. GIL与Lock锁的区别 4. 为什么GIL保证不了自己数据的安全? 5. 验证计算密集型.IO密集型的效率 6. 多线程实现socket通信 7. 进程池,线程…
昨日内容回顾 僵尸进程与孤儿进程 # 僵尸进程: 所有的进程在运行结束之后并不会立刻销毁(父进程需要获取该进程的资源) # 孤儿进程: 子进程正常运行 但是产生该子进程的父进程意外死亡 # 守护进程: 守护进程的结束取决于被守护的对象的进程何时结束 互斥锁 # 锁: 将并发变成串行 牺牲了效率 但是保证了数据的安全 # 代码: mutex.require() 抢锁 mutux.release() 释放锁 ''' 锁虽然好用 但是不要轻易使用 容易造成死锁现象(今后也不会让我们自己处理锁 但是要理…
什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: 一 from threading import Thread def f1(n): print(n,'号线程') if __name__ == '__main__': t1 = Thread(target=f1,args=(1,)) t1.start() print('主线程')  二 from threading import Thread class M…
一.同步锁 三个需要注意的点: #1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来 #2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高 #3. 一定要看本小节最后的GIL与互斥锁的经典分析 GIL VS Lock  …
一.GIL全局解释器锁 1.什么是全局解释器锁 GIL本质就是一把互斥锁,相当于执行权限,每个进程内都会存在一把GIL,同一进程内的多个线程,必须抢到GIL之后才能使用Cpython解释器来执行自己的代码,即同一进程下的多个线程无法实现并行,但是可以实现并发. #1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码) #2 所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,…
一堆锁 死锁现象 (重点) 死锁指的是某个资源被占用后,一直得不到释放,导致其他需要这个资源的线程进入阻塞状态. 产生死锁的情况 对同一把互斥锁加了多次 一个共享资源,要访问必须同时具备多把锁,但是这些锁被不同线程或者进程所持有,就会导致相互等待对方释放从而程序就卡死了 第二种情况的解决方法: 抢锁一定按照相同的顺序去抢 给抢锁加上超时,如果超时则放弃执行 递归锁 (了解) 与普通的区别 相同: 多线程之间都有互斥的效果 不同: 同一个线程可以对这个锁执行多次acquire 解决方法 同一个线程…