RandomShuffleQueue】的更多相关文章

一.几个函数 RandomShuffleQueue类 __init__(self, capacity, min_after_dequeue,dtypes, shapes=None,names=None, seed=None, shared_name=None, name="random_shuffle_queue") queue = tf.RandomShuffleQueue(...):创建一个queue,按随机顺序进行dequeue RandomShuffleQueue有一定的容量限…
problem Traceback (most recent call last): File , in _do_call return fn(*args) File , in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File , in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.OutOfRange…
前言 在使用tensorflow TFRecord的过程中,读取*.tfrecord文件时出现错误,本文解决这个错误. 错误描述: OutOfRangeError (see above , current size ) [[Node: shuffle_batch = QueueDequeueManyV2[component_types=[DT_UINT8, DT_INT32, DT_FLOAT, DT_FLOAT], timeout_ms=-, _device="/job:localhost/r…
1. tf.decode_raw(features['image_raw'],tf.uint8) 解码时,数据类型有没有错?tf.float32 和tf.uint8有没有弄混??? 2. tf.train.string_input_producer([data_file],num_epochs=1) 如果设置num_epochs=1参数,请添加上 tf.local_variables_initializer() 3. 你的数据集通道有没有搞错?真的都是三通道或者都是单通道么?有没有可能单通道图像…
生成检查点文件(chekpoint file),扩展名.ckpt,tf.train.Saver对象调用Saver.save()生成.包含权重和其他程序定义变量,不包含图结构.另一程序使用,需要重新创建图形结构,告诉TensorFlow如何处理权重.生成图协议文件(graph proto file),二进制文件,扩展名.pb,tf.tran.write_graph()保存,只包含图形结构,不包含权重,tf.import_graph_def加载图形. 模型存储,建立一个tf.train.Saver(…
本文整理了TensorFlow中的数据读取方法,在TensorFlow中主要有三种方法读取数据: Feeding:由Python提供数据. Preloaded data:预加载数据. Reading from files:从文件读取. Feeding 我们一般用tf.placeholder节点来feed数据,该节点不需要初始化也不包含任何数据,我们在执行run()或者eval()指令时通过feed_dict参数把数据传入graph中来计算.如果在运行过程中没有对tf.placeholder节点传…
目录 Tensorflow队列 同步执行队列 队列管理器 异步执行队列 线程协调器 在使用TensorFlow进行异步计算时,队列是一种强大的机制. 为了感受一下队列,让我们来看一个简单的例子.我们先创建一个"先入先出"的队列(FIFOQueue),并将其内部所有元素初始化为某些值.然后,我们构建一个TensorFlow图,它从队列前端取走一个元素,加上1之后,放回队列的后端.慢慢地,队列的元素的值就会增加. TensorFlow提供了两个类来帮助多线程的实现:tf.Coordinat…
本文转自:Tensorflow]超大规模数据集解决方案:通过线程来预取 原文地址:https://blog.csdn.net/mao_xiao_feng/article/details/73991787 现在让我们用Tensorflow实现一个具体的Input pipeline,我们使用CoCo2014作为处理对象,网上应该可以下载到CoCo训练集,train2014这个文件.下载链接: http://msvocds.blob.core.windows.net/coco2014/train201…
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较好的价值,而深度学习在大数据场景下更能揭示数据内部的逻辑关系.本文就以大数据作为场景,通过自底向上的教程详述在大数据架构体系中如何应用深度学习这一技术.大数据架构中采用的是hadoop系统以及Kerberos安全认证,深度学习采用的是分布式的Tensorflow架构,hadoop解决了大数据的存储问…
TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管道从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 一 预加载数据 import tensorflow as tf x1 = tf.constant([2,3,4]) x2 = tf.constant([4,0…