作业:K-means算法应用:图片压缩】的更多相关文章

K均值算法   上一期介绍了机器学习中的监督式学习,并用了离散回归与神经网络模型算法来解决手写数字的识别问题.今天我们介绍一种机器学习中的非监督式学习算法--K均值算法.   所谓非监督式学习,是一种与监督式学习相对的算法归类,是指样本并没有一个与之对应的"标签".例如上一期中的识别手写数字照片的例子,样本是照片的像素数据,而标签则是照片代表的数字.非监督式学习因为没有这个标签,因此就没有对样本的一个准确的"答案".非监督式学习主要是用来解决样本的聚类问题.   K…
#读取实例图片# from sklearn.datasets import load_sample_image from sklearn.cluster import KMeans import matplotlib.pyplot as plt china=load_sample_image("china.jpg") plt.imshow(china) plt.show() print(china.shape) #观察图片数据格式# print(china.dtype) print(c…
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
一.课堂练习 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_sample_image #导入图片数据 import PIL #引入PIL,但是下载不下来,如果没有的话,载入图片会报错 import sys china=load_sample_image("china.jpg") plt.imsh…
1. 应用K-means算法进行图片压缩 读取一张图片 观察图片文件大小,占内存大小,图片数据结构,线性化 用kmeans对图片像素颜色进行聚类 获取每个像素的颜色类别,每个类别的颜色 压缩图片生成:以聚类中收替代原像素颜色,还原为二维 观察压缩图片的文件大小,占内存大小 压缩前图片: 压缩2后图片: 2. 观察学习与生活中可以用K均值解决的问题. 从数据-模型训练-测试-预测完整地完成一个应用案例. 这个案例会作为课程成果之一,单独进行评分. 通过对汽车排量和功率来训练模型,然后按照总价进行划…
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?     那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.…
delphi 图片压缩代码 据说是位图缩放保持原图视觉效果最好的算法 若有更好的,请大神留言我也学习下,感谢! uses WinAPI.GDIPAPI, WinAPI.GDIPOBJ; var  Bitmap1: TGPBitmap;  Bitmap2: TBitmap;  Graphic: TGPGraphics;begin  Bitmap1 := TGPBitmap.Create('test.bmp');  // bmp, gif, jpeg, png...  Bitmap2 := TBit…
通俗的介绍这种压缩方式,就是将原来很多的颜色用少量的颜色去表示,这样就可以减小图片大小了.下面首先我先介绍下K-Means,当你了解了K-Means那么你也很容易的可以去理解图片压缩了,最后附上图片压缩的核心代码. K-Means的核心思想 k-means的核心算法也就上面寥寥几句,下面将分三个部分来讲解:初始化簇中心.簇分配.簇中心移动. 初始化簇中心 随机取簇中心若是不幸,会出现局部最优的情况:想要打破这种情况,需要多次取值计算来解决这种情况. 代价函数 代码实现 J = zeros(100…
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据.这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类. 如果K=3,绿色圆点的最邻近的3…
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina.com Luban 鲁班 图片压缩 目录 目录介绍turbo 版本算法步骤使用方式案例 介绍 GitHub Luban(鲁班)-Image compression with efficiency very close to WeChat Moments/可能是最接近微信朋友圈的图片压缩算法 imp…