【机器学习】BP & softmax求导】的更多相关文章

目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向     根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0), 故得到f(x) - f(x0) ~ f'(x0)(x-x0), 所以从x0出发,变化最快,即使f(x)-f(x0)最大,也就f'(x0)(x-x0),由于f'(x0)与(x-x0)均为向量(现在x0取的是一个数,如果放在多维坐标那么x0就是一个多维向量),由余弦定理f'(x0) 与(x-x0)方…
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是: $$  S_i = \frac{e^j }{ \sum\nolimits_{j} e^j}  \tag{1}$$ 更形象的如下图表示: softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率…
softmax求导 softmax层的输出为 其中,表示第L层第j个神经元的输入,表示第L层第j个神经元的输出,e表示自然常数. 现在求对的导数, 如果j=i,   1 如果ji, 2 cross-entropy求导 loss function为 对softmax层的输入求导,如下 label smoothing 对于ground truth为one-hot的情况,使用模型去拟合这样的函数具有两个问题:首先,无法保证模型的泛化能力,容易导致过拟合: 其次,全概率和零概率将鼓励所属类别和非所属类别…
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 cross-entropy 的求导,一脸懵逼,故来整理整理. 以 softmax regression 为例来展示求导过程,softmax regression 可以看成一个不含隐含层的多分类神经网络,如 Fig. 1 所示. Fig. 1 Softmax Regression. softmax r…
Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最稳定点). 为此,特地为神经网络定义了神经网络能量函数$E(x|Label)$,其中$x$为输入. $E(x|Label)=-\frac{1}{2}Wx \Delta Y  \quad where \quad \Delta Y=y-label$   (省略Bias项) 值得注意的是,这套山寨牌能量函…
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任…
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\…
内容来自ufldl,代码参考自tornadomeet的cnnCost.m 1.Forward Propagation convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc); %对于第一个箭头 activationsPooled = cnnPool(poolDim, convolvedFeatures);%对应第二个箭头 %对应第3个箭头,即平铺开 activationsPooled = reshape(act…
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解,如果理解成每个类的打分函数,则会直观许多.预测时我们把样本分配到得分最高的类. Notations: \(x\):输入向量,\(d\times 1\)列向量,\(d\)是feature数 \(W\):权重矩阵,\(c\times d\)矩阵,\(c\)是label数 \(b\):每个类对应超平面的…
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个queue:x(i)的特征维度是 n , 参数 θ 是一个 n×k 的矩阵,输出的结果 y(i) 为一个 k×1 的向量,其中第 j 个元素对应元素的 e 指数为该 queue 属于第 j 类的概率(未归一化).所以虽然损失函数 J(θ) 是一个常数,但是它的自变量为一个矩阵 Θ 和 一个特征向量 x(…
全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好. 1. softmax函数及其求导 softmax的函数公式如下: 其中,表示第L层(通常是最后一层)第j个神经元的输入,表示第L层第j个神经元的输出,表示自然常数.注意看,表示了第L层所有神经元的输入之和. softm…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logistic回归模型来介绍Pytorch的自动求导机制.首先,本文介绍了tensor与求导相关的属性.其次,通过logistic回归模型来帮助理解BP算法中的前向传播以及反向传播中的导数计算. 以下均为初学者笔记. Tensor Attributes Related to Derivation note: 以…
二分类问题Sigmod 在 logistic 回归中,我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logistic 回归是针对二分类问题的,因此类标记 .假设函数(hypothesis function) 如下: 我们将训练模型参数 ,使其能够最小化代价函数 : 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有…
这篇其实跟使用MXnet的关系不大,但对于我们理解深度学习的框架设计还是很有帮助的. 首先还是对promgramming models的一个简单介绍,这个东西实际上是在编译里面经常出现的东西,我们在编译我们的程序的时候,可以对变量构建出一个计算图,然后可以对这个图进行相应的优化来提高速度或者节省内存.到了DL框架上,这些用处就更加重要了,但是也不是所有的DL框架都有计算图的,因为这其中存在一个research和engineering的权衡.计算图的简单理解就是下图: 一.Symbolic vs.…
1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid ​ 首先我们来画出指数函数的基本图形: ​ 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: ​ ​ 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 什么是eager模式 2 TF1.0 vs TF2.0 3 获取导数/梯度 4 获取高阶导数 之前讲解了如何构建数据集,如何创建TFREC文件,如何构建模型,如何存储模型.这一篇文章主要讲解,TF2中提出的一个eager模式,这个模式大大简化了TF的复杂程度. 1 什么是…
考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度计算                 关于线性和非线性的隐层 非线性隐层使得网络可以计算更加复杂的函数 线性隐层不能增强网络的表述能力,它们被用来做降维,减少训练需要的参数数目,这在nlp相关的模型中 经常用到(embedding vector)     一个back prop的例子        …
02-线性结构1. 一元多项式求导 (25) 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样例: 3 4 -5 2 6 1 -2 0 输出样例: 12 3 -10 1 6 0 最简单的方式是用…
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/…
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样…
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样…
如果L全在地面上: 输出 h * D / H 如果L全在墙上: 输出 h 否则: (D - X ) / X = Y / (H - h) L = D - X + h - Y 然后对L求导即可 #include <stdio.h> #include <string.h> #include <math.h> #include <algorithm> using namespace std; int main(){ double H,h,D,x,y,x0; int…
1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms x代表着声明符号变量x,只有声明了符号变量才可以进行符号运算,包括求导. %f(x)=sin(x)+x^2; %我们输入的要求导的函数 y = diff(sin(x)+x^); %代表着对单变量函数f(x)求一阶导数 disp('f(x)=sin(x)+x^2的导数是'); pretty(y); %…
文章目录 ★引子 ★求导 ★最初的想法 ★初步的想法 ★后来的想法 ★最后的想法 ★编程范式 ★结尾 首先声明一点,本文主要介绍的是面向对象(OO)的思想,顺便谈下函数式编程,而不是教你如何准确地.科学地用java求出函数在一点的导数. ★引子 def d(f) : def calc(x) : dx = 0.000001 # 表示无穷小的Δx return (f(x+dx) - f(x)) / dx # 计算斜率.注意,此处引用了外层作用域的变量 f return calc # 此处用函数作为返…
自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有两个标志:requires_grad和volatile.它们都允许从梯度计算中精细地排除子图,并可以提高效率. 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户 requires_grad 如果有一个单一的输入操作需要梯度,它的输出也需要梯度.相反,只有所有输入都不需要梯度…
第一次作业分析 1.程序结构分析 类图: 好吧,这一次基本上完全是在面向过程编程,没有看出来任何的面向对象的特性. 复杂度: 可以看到模块间的相互耦合度很高,PolyDerive方法的非结构化程度也不够理想,是非常不合格的面向对象程序. 2.正则表达式 从带符号整数到项到多项式一步步地写出对应的正则表达式: 符号 String signStrPat = "(?:\\+|-)"; 带符号整数   String intStrPat = "(?:\\+|-)?\\d+";…
一.摘要 本文是BUAA OO课程Unit1在课程讲授.三次作业完成.自测和互测时发现的问题,以及倾听别人的思路分享所引起个人的一些思考的总结性博客.本文第二部分介绍三次作业的设计思路,主要以类图的形式展现,并有简单的优劣分析:第三部分为程序代码复杂度的分析(二.三两部分为基于度量的对自己程序结构的分析):第四部分为对自己.对他人程序的测试.DEBUG.Hack的思考:第五部分是分析作业中可以应用对象创建模式的可能性,和重构的思考. 二.开发设计思路 1.程序类图展示 第一次作业 第二次作业 第…
BUAA-OO-表达式解析与求导 解析 按照常规,解析这一部分我们分为词法分析与语法分析.当然由于待解析的字符串较简单,词法分析器和语法分析器不必单独实现. 词法分析器 按照常规,我们先手写一个词法分析器,而不使用正则表达式. 词法分析器:读取字符流,产生标记流.它聚合字符形成单词,并应用一组规则来判断每个单词在源语言中是否合法,如果合法则为其分配一个语法范畴,产生一个标记. 我们的词法分析器行为如下: 如果 当前输入有定义,则 为其产生一个标记(token, token value).譬如:当…