机器学习——KNN】的更多相关文章

KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 一个对于KNN算法解释最清楚的图如下所示: 蓝方块和红三角均是已有分类数据,当前的任务是将绿色圆块进行分类判断,判断是属于蓝方块或者红三角. 当然这里的分类还跟K值…
=================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮箱(wlsandwho@foxmail.com)”联系我 勿用于学术性引用. 勿用于商业出版.商业印刷.商业引用以及其他商业用途. 本文不定期修正完善. 本文链接:http://www.cnblogs.com/wlsandwho/p/7512119.html 耻辱墙:http://www.cnblo…
本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k-NearestNeighbor)分类算法是机器学习算法中最简单的方法之一.所谓K近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.我们将样本分为训练样本和测试样本.对一个测试样本 t  进行分类,kNN的做法是先计算样本 t  到所有训练样本的欧氏距离,然后从中找出k…
基于Peter Harrington所著<Machine Learning in Action> kNN,即k-NearestNeighbor算法,是一种最简单的分类算法,拿这个当机器学习.数据挖掘的入门实例是非常合适的. 简单的解释一下kNN的原理和目的: 假设有一种数据,每一条有两个特征值,这些数据总共有两大类,例如: [ [1 , 1.1] , [ 1 , 1 ] , [0 , 0 ] , [0 , 0.1] ] 这四个数据(训练数据),种类分别为[ 'A' , 'A' , 'B' ,'…
最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入基于实例的学习(instance-based learning),懒惰学习(lazy learing) 2. 例子 未知电影属于什么类型? 3.算法详述 3.1 步骤 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服…
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如有新的数据加入,需要判断这个新的数据属于数据集中的哪一类 我们添加一个新的数据,重新绘制散点图 No.6. kNN的实现过程——计算x到训练数据集中每个点的距离 No.7. kNN的实现过程——使用argsort来获取距离x由近到远的点的索引组成的向量,进行保存 No.8. kNN的实现过程——指定…
K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.比如:判断一个人的人品,只需要观察与他来往最密切的几个人的人品好坏就可以得出,即"近朱者赤,近墨者黑":KNN算法既可以应用于分类应用中,也可以应用在回归应用中. KNN在做回归和分类的主要区别在于最后做预测的时候的决策方式不同.KNN在分类预测时,一般采用多数表决法:而在做回归预测时,一般采用平均值法. KNN算法原理…
1.  K-近邻(k-Nearest Neighbors,KNN)的原理 通过测量不同特征值之间的距离来衡量相似度的方法进行分类. 2.  KNN算法过程 训练样本集:样本集中每个特征值都已经做好类别标签: 测试样本:  测试样本中每个特征值都没有类别标签: 算法过程:  计算测试样本中特征值与训练样本集中的每个特征值之间的距离,提取与训练样本集中的特征值距离最近的前K个样本,然后选取出现次数最多的类别标签,作为测试样本的类别标签. 3.   度量特征值之间距离的方法 (1)   欧氏距离 可称…
摘要: 一张图说清楚KNN算法 看下图,清楚了吗?   没清楚的话,也没关系,看完下面几句话,就清楚了. KNN算法是用来分类的. 这个算法是如何来分类的呢? 看下图,你可以想想下图中的 『绿色圆点』是一只刚生下来的 小鸭子, 『红三角』是成年的老母鸡, 『蓝方块』是成年的母鹅. 问题来了,小鸭子去找自己的妈妈,它觉得老母鸡是自己的妈妈呢,还是母鹅是自己的妈妈呢? 小鸭子(KNN算法)视力范围1米内(实线圆圈),发现了2只母鸡和1只鹅,小鸭子就认为母鸡是自己的妈妈. 如果小鸭子(KNN算法)视力…
=================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮箱(wlsandwho@foxmail.com)”联系我 勿用于学术性引用. 勿用于商业出版.商业印刷.商业引用以及其他商业用途. 本文不定期修正完善. 本文链接:http://www.cnblogs.com/wlsandwho/p/7587203.html 耻辱墙:http://www.cnblo…