最小生成数(并查集)Kruskal算法】的更多相关文章

链接:https://ac.nowcoder.com/acm/contest/548/C来源:牛客网 Tachibana Kanade Loves Review 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048576K 64bit IO Format: %lld 题目描述 立华奏是一个刚刚开始学习 OI 的萌新. 最近,实力强大的 QingyuQingyu 当选了 IODS 9102 的出题人.众所周知, IODS 是一场极其毒瘤的比赛.为了在这次…
相关介绍:  并查集的相关算法,是我见过的,最为之有趣的算法之一.并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.其相关的实现代码较为简短,实现思想也简单易懂,处理问题的效率也高,解决的问题范围也较广.  为了实现并查集的相关算法,我们规定将对象称之为触点,将整数对称之为连接,将两两之间彼此互不相连的各个集合的分布(也就是其相关的等价类)称之为连通分量,也称为分量.同时定义了如下的API用来封装其所需的基本操作: public class UF…
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=3371 思路: 这道题很明显是一道最小生成树的题目,有点意思的是,它事先已经让几个点联通了.正是因为它先联通了几个点,所以为了判断连通性 很容易想到用并查集+kruskal. 不过要注意 这题有一个坑点,就是边数很多 上限是25000,排序的话可能就超时了.而点数则比较少 上限是500,所以很多人选择用Prim做.但我个人觉得这样连通性不好判断.其实边数多没关系,我们只要去重就好啦,用邻接矩阵存下两点…
解法一: 1.首先想到离线做法:将边和询问从大到小排序,并查集维护连通块以及每个连通块中所有点到1号点的最短距离.$O(n\log n)$ 配合暴力等可以拿到75分. 2.很容易想到在线做法,使用可持久化并查集,询问时二分即可. 不能使用路径压缩,应该按秩合并,注意秩是树的深度而不是大小.$O((E+Q)\log^2 N)$ 由于常数过大,基本过不去. 3.考虑优化算法二,发现访问历史版本并不需要修改而只需要询问,所以一开始只使用普通的并查集,用可持久化数组记录并查集的修改情况. $O((N+E…
动态连通性 . 假设程序读入一个整数对p q,如果所有已知的所有整数对都不能说明p和q是相连的,那么将这一整数对写到输出中,如果已知的数据可以说明p和q是相连的,那么程序忽略p q继续读入下一整数对. 为了实现这个效果,我们设计并查集这种数据结构来保存程序已知的所有整数对的足够多的信息,并用它们来判断一对新对象是否连通,这个问题通俗地叫做动态连通性问题. union-find算法的api 为了方便,我们把每个对象称为触点,使用一个触点为索引的数组id[]作为基本的数据结构来表示所有分量,对于每个…
1191: [HNOI2006]超级英雄Hero Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1804  Solved: 850[Submit][Status] Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目,只有当选手正确回答一道题后,才能进入下一题,否则就被淘汰.为了增加节目的趣味性并适当降低难度,主持人总…
原文链接:http://blog.csdn.net/dm_vincent/article/details/7655764 本文主要介绍解决动态连通性一类问题的一种算法,使用到了一种叫做并查集的数据结构,称为Union-Find. 更多的信息可以参考Algorithms 一书的Section 1.5,实际上本文也就是基于它的一篇读后感吧. 原文中更多的是给出一些结论,我尝试给出一些思路上的过程,即为什么要使用这个方法,而不是别的什么方法.我觉得这个可能更加有意义一些,相比于记下一些结论. 关于动态…
原文链接https://www.cnblogs.com/zhouzhendong/p/NOI2018Day1T1.html 题目传送门 - 洛谷P4768 题意 给定一个无向连通图,有 $n$ 个点 $m$ 条边,每条边有两个属性:海拔$(a)$.距离$(l)$. 有 $Q$ 组询问,每组询问两个数 $v,p$,表示询问从点 $v$ 出发,从第一次走海拔高度不超过 $p$ 的边起算,问行走距离最小为多少.(即,在第一次走海拔高度不超过 $p$ 的边之前,走的所有边都是免费的) $T$ 组数据,强…
题目地址:http://poj.org/problem?id=1861 题意:输入点数n和边数n,m组边(点a,点b,a到b的权值).要求单条边权值的最大值最小,其他无所谓(所以多解:(.输出单条边最大值,边的数量,每条边(点a,点b). 思路:结构体记录节点x,y和权值d.写一个比较函数+sort使结构体按权值由小到大排序. 并查集:两个集合被选中的和没被选中的. kruskal:初始化每个节点独自一个集合,每次输入不在一个集合的就合并并记录,在一个集合的不管.输出记录数组最后一个节点的权值(…
题面 一句话题意: 给定一张 N 个点, M 条边的无向连通图, 每条边上有边权 w . 求删去任意一个点后的最小生成树的边权之和. 思路 首先肯定要$kruskal$一下 考虑$MST$里面去掉一个点,得到一堆联通块,我们要做的就是用原图中剩下的边把这些联通块穿起来 考虑这个点$u$在$MST$上的位置,可以知道有两种边:一种是从$u$的任意一个儿子的子树连到$u$的子树外面的,一种是在$u$的两个儿子的子树之间连接的 第一种情况: 考虑边$(u,v)$,没有进入$MST$中,那么若它是某个节…
还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 34391    Accepted Submission(s): 15542 Problem Description 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能…
描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了--但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成了--小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的). 输入 每个测试点(输入文件)有且仅有一组…
搜了题解才把题搞明白.明白之后发现其实题意很清晰,解题思路也很清晰,只是题目表述的很不清晰…… 大意如下—— 给你一个无向图,图中任意两点的距离是两点间所有路径上的某一条边,这条边需要满足两个条件:1. 这条边这两点间某条路径上的最长边:2. 这条边是这两点间所有路径上的最长边中的最短边. 简单来说,假如a到d有两条路径,一条经过b,一条经过d,其中ab = 1, bd = 3, ac = 2, cd = 2,那么abd上的最长边为3,acd上的最长边为2,则ad的距离为2. 如果a, d两点间…
[BZOJ4551][Tjoi2016&Heoi2016]树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记,而且对于某个结点,可以打多次标记.)2. 询问操作:询问某个结点最近的一个打了标记的祖先(这个结点本身也算自己的祖先)你能帮帮他吗? Input 输入第一行两个正整数N和Q分别表示节点个数和操作次数接下来N-1行,每行…
题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1​,r1​,l2​,r2​ 相当于 S l 1 = S l 2 , S l 1 + 1 = S l 2 + 1 , - , S r 1 = S r 2 \tt S_{l_1}=S_{l_2},S_{l_1+1}=S_{l_2+1},\dots,S_{r_1}=S_{r_2} Sl1​​=Sl2​​,Sl1​+1​=S…
并查集:使用并查集可以把每个连通分量看作一个集合,该集合包含连通分量的所有点.这两两连通而具体的连通方式无关紧要,就好比集合中的元素没有先后顺序之分,只有属于和不属于的区别.#define N 100 int father[N]; void init() { for(int i=0;i<n;i++) father[i]=1; } void union(int x,int y) //合并两元素所在集合 { x=getfather(x); y=getfather(y); if(x!=y) fathe…
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不…
并查集 并查集处理的是集合之间的关系,即‘union' , 'find' .在这种数据类型中,N个不同元素被分成若干个组,每组是一个集合,这种集合叫做分离集合.并查集支持查找一个元素所属的集合和两个元素分别所属的集合的合并. 并查集支持以下操作: MAKE(X):建立一个仅有成员X的新集合. UNION(X,Y):将包含X和Y的动态集合合并为一个新集合S,此后该二元素处于同一集合. FIND(X):返回一个包含X的集合. 注意:并查集只能进行合并操作,不能进行分割操作. 并查集的实现原理 并查集…
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios…
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻找n-1条边,恰好将这n个节点相连,并且这n-1条边的权值之和最小. 对于MST问题,通常常见的解法有两种:Prim算法   或者  Kruskal算法+并查集 对于最小生成树,一定要注意其定义是在无向连通图的基础上,如果在有向图中,那么就需要另外的分析,单纯用无向图中的方法是不能得出正确解的,这一…
Constructing Roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19884   Accepted: 8315 Description There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each…
一.什么是并查集 在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题.有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作: Find:确定元素属于哪一个子集.它可以被用来确定两个元素是否属于同一子集. Union:将两个子集合并成一个集合. 二.主要操作 初始化:把每个点所在的集合初始化为其自身. for(int i=1;i<=n;i++) f[i]=i; 查找:查找元素所在的集合,即根节点. int find(int x)…
并查集是一种可以在较短的时间内进行集合的查找与合并的树形数据结构 每次合并只需将两棵树的根合并即可 通过路径压缩减小每颗树的深度可以使查找祖先的速度加快不少 代码如下: int getfather(int x) //查找祖先 { if(father[x]!=x) father[x]=getfather(father[x]); //路径压缩,把每个节点的父亲都变得与他的祖先相同 else return x; return father[x]; } int issame(int x,int y) /…
Network Description Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have…
定义 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图. 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权:权代表着连接连个顶点的代价,称这种连通图叫做连通网. 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边.一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环…
全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue> #include<stack> #include<algorithm> #include<stdio.h> #include<stdlib.h> using namespace std; /* //函数集合声明下,方便查看 void Dijkstra(…
全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue> #include<stack> #include<algorithm> #include<stdio.h> #include<stdlib.h> using namespace std; /* //函数集合声明下,方便查看 void Dijkstra(…
The Unique MST 时间限制: 10 Sec  内存限制: 128 MB提交: 25  解决: 10[提交][状态][讨论版] 题目描述 Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tre…
Kruskal 重构树 [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树 kruskal是一个性质优秀的算法 加入的边是越来越劣的 科学家们借这个特点尝试搞一点事情. kruskal求最小生成树的过程,如果把加入的一个边新建一个节点的话,并且把k1,k2的father设为新点的话,会得到一个2*n大小的树 实际上已经非常明白地表示kruskal这个过程了.这个树叫kruskal重构树 每个点的权值定义为所代表的边的权值.叶子节点权值最优. 由于贪心,所以树上所有点,…
议题:并查集(Union-Find Sets) 分析: 一种树型数据结构,用于处理不相交集合(Disjoint Sets)的合并以及查询:一开始让所有元素独立成树,也就是只有根节点的树:然后根据需要将关联的元素(树)进行合并:合并的方式仅仅是将一棵树最原始的节点的父亲索引指向另一棵树: 优化:加入一个rank数组存储节点深度的下界(从当前节点到其最远子节点的距离),从而可以启发式的对树进行合并,从而减少树的深度,防止树的退化:使 得包含较少节点的树根指向包含较多节点的树根,具体指代为树的高度:另…