4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.11一维和三维卷积 二维和一维卷积 对于2D卷积来说,假设原始图像为\(14*14*3\)的三通道图像,使用32个\(5*5*3\)的卷积核(其中3表示通道数,一般只关注感受野的大小,而卷积核的深度大小与输入的通道数相同)进行卷积,则得到大小为\(10*10*32\)大小的特征图. 对于1D卷积而言,假设原始图像为\(14*1\)的单通道灰度图像,使用16个\(5*1*1\)的卷积核(因为处理…