目前最快速Kmeans算法,并由java实现!面对很大的K值表现依然很好. 代码地址: https://github.com/Jethu1/fastKmeans #1.这是一个由java实现的的,多线程Kmeans聚类算法: #2.在聚类的选种阶段分别实现了Kmeans++算法和NIPS 2016的文章“Fast and Probably Good Seedings for k-Means”中提出了AFK-MC²算法,该算法改进了k-Means算法中初始种子点的生成方式,使其聚类速度相较于目前最…
1.K-means算法简述以及代码原型 数据挖掘中一个重要算法是K-means.我这里就不做具体介绍.假设感兴趣的话能够移步陈皓的博客: http://www.csdn.net/article/2012-07-03/2807073-k-means 讲得非常好 总的来讲,k-means聚类须要下面几个步骤: ①.初始化数据 ②.计算初始的中心点,能够随机选择 ③.计算每一个点到每一个聚类中心的距离.而且划分到距离最短的聚类中心簇中 ④.计算每一个聚类簇的平均值,这个均值作为新的聚类中心,反复步骤3…
kMeans算法原理见我的上一篇文章.这里介绍K-Means的Java实现方法,参考了Python的实现方法. 一.数据点的实现 package com.meachine.learning.kmeans; import java.util.ArrayList; /** * 数据点,有n维数据 * */ public class Point { private static int num; private int id; private int dimensioNum; // 维度 privat…
这里的程序稍微有点变形.k_means方法返回K-means聚类的若干中心点.代码: import java.util.ArrayList; import java.util.Collections; public class Prophet_kmeans { private static final int MAXK = 100; private static int n = 0; private static int K = 0; private static ArrayList<Doubl…
public class KMeansCluster {          private int k;//簇的个数          private int num = 100000;//迭代次数          private List<double> datas;//原始样本集          private String address;//样本集路径          private List<point> data = new ArrayList<point&…
kmeans算法的流程:   EM思想很伟大,在处理含有隐式变量的机器学习算法中很有用.聚类算法包括kmeans,高斯混合聚类,快速迭代聚类等等,都离不开EM思想.在了解kmeans算法之前,有必要详细了解一下EM思想. Kmeans算法属于无监督学习中的一种,相比于监督学习,能节省很多成本,省去了大量的标签标注.每个数据点都有自己的隐式的分类.聚类要做的是,从中选取出数个聚类中心,对数据集进行初始聚类.此后,通过更新聚类中心(把簇中心缓存起来),重新聚类,然后再更新簇中心,如果此簇中心与旧的簇…
K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则.K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小.算法采用误差平方和准则函数作为聚类准则函数. package com.coshaho.learn.kmeans; import java.io.BufferedReader; import java.io.BufferedWrit…
Kmeans算法的Java实现.源代码放在github上,大家有兴趣能够下下来看看, 源代码地址: https://github.com/l294265421/algorithm-kmeans 实现该算法主要阅读的书籍是: <Web数据挖掘>第二版,作者:Bing Liu.译者:俞勇…
不多说,直接上干货! 面试很容易被问的:K-Means算法的收敛性. 在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Means与EM算法的关系,以及EM算法本身的收敛性证明中找到蛛丝马迹,下次不要再掉坑啊. EM算法的收敛性 1.通过极大似然估计建立目标函数: 通过EM算法来找到似然函数的极大值,思路如下:希望找到最好的参数θ,能够使最大似然目标函数取最大值.但是直接计算 比较困难,所以我们希望能够找到一个不带隐变量z的函数恒成立,并用 逼近目标函数. 如下图所示: 在绿色线位…
0 K-means算法简介 K-means是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一. K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 算法过程如下:   1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2-3步直至新的质心与原质心相等或小于指定阈值,算法结束     参考…