Deeplearning学习】的更多相关文章

Deeplearning 概念 Deep Learning:   观点: 认为AI是最新的电力,大约在一百年前,我们社会的电气化改变了每个主要行业,从交通运输行业到制造业.医疗保健.通讯等方面,我认为如今我们见到了AI明显的令人惊讶的能量,带来了同样巨大的转变. 神经网络 什么是神经网络? 我的理解:给定原始输入数据,按照特定的计算规则传递给神经元,后续经过相应的计算规则继续传递给下一层神经元,当到达最后一层时,得到的神经元中存储的数据即为需要输出的数据. 简单描述: 尝试输入一个x,即可把它映…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学.并记录下来,其中会有很多摘抄. (一)什么是多层感知器和反向传播 1,单个神经元 神经网络的基本单元就是神经元,一个神经元就是处理输入并输出的小玩意,下面是一个图   , 可以看到每一个输入都有自己的权重,权重和输入的值相乘,然后加上一个偏置b之后在经过一个函数f得到输出y,这个f就是激活函数,激活函数的作用是将非线性引入神经元的输出.因为大多数现实世界的数据都是非线性的,我们希望神经元能够学习非线性的函…
1 sotfmax 函数: stanford UFLDL: http://deeplearning.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 softmax 损失函数 求导: https://blog.csdn.net/qian99/article/details/78046329 2 feedforward neural networks backpropagation algorithm: https://www.cnblog…
今天找到一个比较好的deep learning的教材:Neural Networks and Deep Learning 对神经网络有详细的讲解,鉴于自己青年痴呆,还是总结下笔记吧=.= Perceptron感知器 Perceptron的输入的一组binary变量xi,对这些binary变量求出加权和后,如果这个和大于某个阈值threshold,就输出1:否则输出0. 所以perceptron的输入输出都是binary的,我们可以把一个perceptron的输入看成一组“evidences”(证…
深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料的时候,经常会被叫去看那几篇论文,而那几篇论文也没有系统地说明word2vec的具体原理和算法,所以老衲就斗胆整理了一个笔记,希望能帮助各位尽快理解word2vec的基本原理,避免浪费时间. 当然如果已经了解了,就随便看看得了. 一. CBOW加层次的网络结构与使用说明 Word2vec总共有两种类…
[白话解析] 带你一起梳理Word2vec相关概念 0x00 摘要 本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来说,运用感性直觉的思考来帮大家梳理Word2vec相关概念. 0x01 导读 1. 原委 本来只是想写Word2vec,没想到一个个知识点梳理下来,反而Word2vec本身只占据了一小部分.所以干脆就把文章的重点放在梳理相关概念上,这样大家可以更好的理解Word2vec. 为了讨论Word2vec,我们需要掌握(或者暂且当做已知)的先决知识点有: 独热编码 /…
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络 第二章 改善深层神经网络 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以及优化--Week1深度学习的实用层面 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以…
因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logistic Regression with a Neural Network mindset v3.ipynb 很多朋友反映找不到h5文件,我已经上传了,具体请戳h5文件 week3 Planar data classification with one hidden layer v3.ipynb week4…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…
本系列主要是我对吴恩达的deeplearning.ai课程的理解和记录,完整的课程笔记已经有很多了,因此只记录我认为重要的东西和自己的一些理解. 第一门课 神经网络和深度学习(Neural Networks and Deep Learning) 第一周:深度学习引言(Introduction to Deep Learning) 1.常用神经网络的结构与对应的数据类型 数据类型 结构化数据:表格类型的数据,有明确的行和列. 非结构化数据:音频.视频.图像.文本等类型的数据. 网络结构 标准的NN结…
工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs.com/orzs/p/10951473.html 需要部署的软件 conda环境 nccl2环境 openmpi环境 horovod环境 1. 创建conda环境 官网下载地址:https://www.anaconda.com/distribution/#download-section 下载合适…
深度学习DeepLearning核心技术实战2020年01月03日-06日 北京一.深度学习基础和基本思想二.深度学习基本框架结构 1,Tensorflow2,Caffe3,PyTorch4,MXNet三,卷积神经网络CNN 循环神经网络RNN 强化学习DRL 对抗性生成网络GAN 迁移学习TL四.深度学习算法理论解析:五.深度学习实际应用案例操作:1,CNN——>图像分类 2,Lstm——>文本分类3,Lstm——>命名实体抽取 4,Yolo——>目标检测 5,图像分类(CNN)…
深度学习DeepLearning核心技术开发与应用时间地点:2019年11月01日-04日(北京) 联系人杨老师  电话(同微信)17777853361…
可变剪切的预测已经很流行了,目前主要有两个流派: 用DNA序列以及variant来预测可变剪切:GeneSplicer.MaxEntScan.dbscSNV.S-CAP.MMSplice.clinVar.spliceAI 用RNA来预测可变剪切:MISO.rMATS.DARTS 前言废话 科研圈的热点扎堆现象是永远存在的,且一波接一波,大部分不屑于追热点且不出成果也基本都被圈子给淘汰了. 做纯方法开发的其实是很心累的,费时费力费脑,特别是自己的研究领域已经过时的时候,另外还得承受外行的歧视:“你…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
深度学习 (DeepLearning) 基础 [1]---监督学习与无监督学习 Introduce 学习了Pytorch基础之后,在利用Pytorch搭建各种神经网络模型解决问题之前,我们需要了解深度学习的一些基础知识.本文主要介绍监督学习和无监督学习. 以下均为个人学习笔记,若有错误望指出. 监督学习和无监督学习 常见的机器学习方法的类型如下: 监督学习:用已知标签的训练样本训练模型,用来预测未来输入样本的标签,如用于逻辑回归分类器. 无监督学习:不需要有已知标签的训练样本,而是直接对数据建模…
深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习"中我们介绍了监督学习和无监督学习相关概念.本文主要介绍神经网络常用的损失函数. 以下均为个人学习笔记,若有错误望指出. 神经网络常用的损失函数 pytorch损失函数封装在torch.nn中. 损失函数反映了模型预测输出与真实值的区别,模型训练的过程即让损失函数不断减小,最终得到可以拟合预测训练样…
深度学习 (DeepLearning) 基础 [3]---梯度下降法 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数"中我们介绍了神经网络常用的损失函数.本文将继续学习深度学习的基础知识,主要涉及基于梯度下降的一类优化算法.首先介绍梯度下降法的主要思想,其次介绍批量梯度下降.随机梯度下降以及小批量梯度下降(mini-batch)的主要区别. 以下均为个人学习笔记,若有错误望指出. 梯度下降法 主要思想:沿着梯度反方向更新相…
深度学习 (DeepLearning) 基础 [4]---欠拟合.过拟合与正则化 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [3]---梯度下降法"中我们介绍了梯度下降的主要思想以及优化算法.本文将继续学习深度学习的基础知识,主要涉及: 欠拟合和过拟合 正则化 以下均为个人学习笔记,若有错误望指出. 欠拟合和过拟合 要理解欠拟合和过拟合,我们需要先清楚一对概念,即偏差和方差. 偏差和方差是深度学习中非常有用的一对概念,尤其是可以帮助我们理解模型的欠拟合…
深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电脑测试) 一.培训方式:(即日起,开始报名!) 1.远程在线 (集中时间远程操作培训) 2.作业训练 (规定的时间把作业完成) 3.集中答疑 (统一时间进行疑难问题答疑) 二.主讲内容: 课程一: Tensorflow入门到熟练: 课程二:图像分类: 课程三:物体检测: 课程四:人脸识别: 课程五:算法实现: 1.卷积神…
12月线上课程报名中 深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电脑测试) 一.培训方式:(即日起,开始报名!) 1.远程在线 (集中时间远程操作培训) 2.作业训练 (规定的时间把作业完成) 3.集中答疑 (统一时间进行疑难问题答疑) 二.主讲内容: 课程一: Tensorflow入门到熟练: 课程二:图像分类: 课程三:物体检测: 课程四:人脸识别: 课程五:…
深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电脑测试) 一.培训方式:(即日起,开始报名!) 1.远程在线 (集中时间远程操作培训) 2.作业训练 (规定的时间把作业完成) 3.集中答疑 (统一时间进行疑难问题答疑) 二.主讲内容: 课程一: Tensorflow入门到熟练: 课程二:图像分类: 课程三:物体检测: 课程四:人脸识别: 课程五:算法实现: 1.卷积神…
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我们以1000为单位,将数据进行划分,令\(x^{\{1\}}=\{x^{(1)},x^{(2)}--x^{(1000)}\}\), 一般地用\(x^{\{t\}},y^{\{t\}}\)来表示划分后的mini-batch. 注意区分该系列教学视频的符号标记: 小括号() 表示具体的某一个元素,指一个…
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来解决这个问题. 二.边缘检测示例 边缘检测可以是垂直边缘检测,也可以是水平边缘检测,如上图所示. 至于算法如何实现,下面举一个比较直观的例子: 可以很明显的看出原来6 * 6的矩阵有明显的垂直边缘,通过3 * 3的过滤器(也叫做 "核")卷积之后,仍然保留了原来的垂直边缘特征,虽然这个边缘…
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二.经典网络 1.LeNet-5 该网络主要针对灰度图像训练的,用于识别手写数字. 该网络是在1980s提出的,当时很少用到Padding,所以可以看到随着网络层次增加,图像的高度和宽度都是逐渐减小的,深度则不断增加. 另外当时人们会更倾向于使用Average Pooling,但是现在则更推荐使用Max…
1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/development set).测试集(test set). 对于传统的机器学习算法,数据量(比如100.1000.10000),常用的分法是70%训练集/30%测试集.60%训练集/20%验证集/20%测试集. 对于大数据(比如100万),可能分法是98%训练集/1%验证集/1%测试集.99.5%训练集/0.…