给你 n 个点,支持 m 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. n≤3×10^5 n≤3×10^5 ,m≤5×10^5 m≤5×10^5 . 我们知道与一个点距离最大的点为任意一个直径的两个端点之一. 两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二. 于是我们可以用lct和并查集来维护树的直径的两个端点. #include<iostream> #include<…
题目传送门 https://loj.ac/problem/6038 题解 根据树的直径的两个性质: 距离树上一个点最远的点一定是任意一条直径的一个端点. 两个联通块的并的直径是各自的联通块的两条直径的四个端点的六个连线段之一. 于是我们可以维护每一个联通块的直径就可以了,这个可以用并查集实现. 但是从六条路径中选择直径需要求出每一条路径的长度,怎么求呢? 因为有强制在线部分,所以不能直接把树建立出来. 那就用 LCT 吧. 时间复杂度 \(O(q(\log n + \alpha(n)))\).…
树的直径一定是原联通块4个里的组合 1.LCT,维护树的直径,这题就做完了 2.直接倍增,lca啥的求求距离,也可以吧- // powered by c++11 // by Isaunoya #include <bits/stdc++.h> #define rep(i, x, y) for (register int i = (x); i <= (y); ++i) #define Rep(i, x, y) for (register int i = (x); i >= (y); -…
题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$m\le 5\times 10^5$ . 题解 树的直径+并查集+LCT 与直径相关的结论1:与一个点距离最大的点为任意一条直径的两个端点之一. 与直径相关的结论2:两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二. 于是问题就变简单了,用并查集…
题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之间连一条边新树直径的端点一定是第一棵树直径的两个端点和第二颗树直径的两个端点这四个点之二 然后用并查集维护联通块的直径就行了.注意因为这里强制在线,所以得用\(LCT\)来维护距离 并不建议看代码因为这个代码非常难懂哪怕我加满注释您都不一定看得懂 //minamoto #include<bits/s…
题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多有一条路径能互相到达.有的时候 Miranda 会从某个小镇开始进行徒步旅行,每次出发前,她都想选择一个她能到达的最远的小镇作为终点,并且她在行走过程中是不会走回头路的,为了估算这次旅行的时间,她会需要你告诉她这次旅行的时间会是多少呢?可以假设通过每条道路都需要单位时间,并且 Miranda 不会在…
题目链接 问题分析 要求树上最远距离,很显然就想到了树的直径.关于树的直径,有下面几个结论: 如果一棵树的直径两个端点为\(a,b\),那么树上一个点\(v\)开始的最长路径是\(v\rightarrow a\)或\(v \rightarrow b\). 如果有两棵树,直径分别为\(a_1,b_1\)和\(a_2,b_2\),那么在这两棵树间连一条边,新树的直径只可能是\(a_1\rightarrow b_1,a_1\rightarrow a_2, a_1\rightarrow b_2, a_2…
分析 代码 #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define _(x) int x #define mp make_pair #define pr pair<int,int> ],son[][],a[],siz[],r[]; inline ]]+siz[son[x][]]+;return;} inline ],son[x][]);r[x]^=;return;…
题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右买不到.展览中总共有 N 种珠宝,每种珠宝都只有一个,对于第 i种珠宝,它的售价为 Ci​ 万元,对 Miranda 的吸引力为 Vi​.Miranda 总共可以从银行中取出 K 万元,现在她想知道,假如她最终带了 i 万元去展览会,她能买到的珠宝对她的吸引力最大可以是多少? 题解 菜死了菜死了..…
填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表示了 枚举矩阵$A$,求出它的秩$r$,如果$C$在$A$的线性空间内则$C$可以被$A$表示出来 那么$B$矩阵的方案数就是$(2^{n-r})^n$ 这时候我们可以发现,由于枚举$A$覆盖了所有情况,秩相同的$C$的答案都是一样的 然后就可以打表算答案了.. 60pts 如果不想看可以跳过这段…