算法不是通用的,基于深度学习的应用系统不但做不到通用,即使对于同一类业务场景,还需要为每个场景做定制.特殊处理,这样才能有可能到达实用标准.这种局限性在计算机视觉领域的应用中表现得尤其突出,本文介绍基于深度学习的交通行业视频结构化类应用在实际使用场景中遇到的一些问题.计算机视觉处理的目标是图片,因此图片直接影响最终算法的效果,实际场景中碰到的问题基本都是由于各种原因导致视频图片发生变化最后影响系统的使用效果. 露天天气环境影响 由于天气变化.光照季节性变化等各种原因,视频画面经常出现干扰性噪声,…