牛顿插值法的原理,在维基百科上不太全面,具体可以参考这篇文章.同样贴出,楼主作为初学者认为好理解的代码. function p=Newton1(x1,y,x2) %p为多项式估计出的插值 syms x n = length(x1); %差商的求法 for i=2:n f1(i,1)=(y(i)-y(i-1))/(x1(i)-x1(i-1)); end for i=2:n for j=i+1:n f1(j,i)=(f1(j,i-1)-f1(j-1,i-1))/(x1(j)-x1(j-i)); en…
#-*— coding:utf-8 -*- #Program 0.3 Lagrange Interpolation import matplotlib.pyplot as plt import numpy as np import scipy as np import random #随机生成10个介于(-255,255)的结点 def getdata(): a = np.zeros(10, np.double) b = np.zeros(10, np.double) for i in rang…
使用牛顿迭代法求方程 在x附近的一个实根. 赋值X,即迭代初值:用初值x代入方程中计算此时的f(x)=(a * x * x * x + b * x * x + c * x + d)和f’(x)=(3 * a * x * x + 2 * b * x + c) 计算增量f(x)/f’(x):计算下一个x: x-f(x)/f’(x); 把新产生的x替换 x: x=x-f(x)/f’(x),循环; 若d绝对值大于0.00001,则重复上述步骤. def diedai(a, b, c, d,X)…
# -*- coding: utf-8 -*- #Program 0.5 Hermite Interpolation import matplotlib.pyplot as plt import numpy as np #计算基函数的导数值 def dl(i, xi): result = 0.0 for j in range(0,len(xi)): if j!=i: result += 1/(xi[i]-xi[j]) result *= 2 return result #计算基函数值 def l…
公式不便于在这里编辑,所以在word中编辑好了,截图过来. 用python+牛顿迭代法 求 y =(x-2)**3的解 import numpy as np import matplotlib.pyplot as plt ''' 牛顿迭代法实现 y =(x-2)**3的解 ''' def f(x): return (x-2)**3 def fd(x): return 3*((x-2)**2) def newtonMethod(n,assum): time = n x = assum next…
在假期利用Python完成了<数值分析>第二章的计算实习题,主要实现了牛顿插值法和三次样条插值,给出了自己的实现与调用Python包的实现--现在能搜到的基本上都是MATLAB版,或者是各种零碎的版本. 代码如下: (第一题使用的自己的程序,第二第三题使用的Python自带库) import math import matplotlib.pyplot as plt import numpy as np import pandas as pd from numpy.linalg import s…