TensorFlow笔记-03-张量,计算图,会话】的更多相关文章

TensorFlow笔记-03-张量,计算图,会话 搭建你的第一个神经网络,总结搭建八股 基于TensorFlow的NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型 张量(tensor):多维数组(列表) 阶:表示张量的维数 ·· 维 数 ···· 阶 ········· 名 字 ········· 例 子 ············ ·· 0-D ······ 0 ····· 标量 scalar ···· s=1 2 3 ·· 1-D ······…
import tensorflow as tf g1 = tf.Graph() with g1.as_default(): v = tf.get_variable("v", [1], initializer = tf.zeros_initializer()) # 设置初始值为0 g2 = tf.Graph() with g2.as_default(): v = tf.get_variable("v", [1], initializer = tf.ones_initi…
更改的程序部分如下: 另: 难?????????????见链接: https://www.bilibili.com/video/av22530538/?p=17 + (完)…
TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 TensorFlow笔记-07-神经网络优化-学习率,滑动平均 TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 TensorFlow笔记-05-反向传播,搭建神经网络的八股 TensorFlow笔记-04-神经网络的实现过程,前向传播 TensorFlow笔记-03-张量,计算图,会话 TensorFlow笔记-02-Windows下搭建TensorFlow环境(win版非虚拟机)…
20180929 北京大学 人工智能实践:Tensorflow笔记03(2018-09-30 00:01)…
tensor的含义是张量,张量是什么,听起来很高深的样子,其实我们对于张量一点都不陌生,因为像标量,向量,矩阵这些都可以被认为是特殊的张量.如下图所示: 在TensorFlow中,tensor实际上就是各种"数"的统称.而flow是流动的意思.所以TensorFlow的意思就是"数"的流动,可以说TensorFlow这个名字很形象.一般来说,编程模式有两种,一种是命令式的,一种是符号式的.命令式便于理解和调试,而符号式便于对复杂代码进行封装和抽象(就想我们把一些操作…
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激活函数:引入非线性激活因素,提高模型的表达能力 常用的激活函数有relu.sigmoid.tanh等 (1)激活函数relu:在Tensorflow中,用tf.nn.relu()表示 (2)激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 (3)激活函数tanh…
TensorFlow笔记-04-神经网络的实现过程,前向传播 基于TensorFlow的NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型 张量(tensor):多维数组(列表) 阶:张量的维数 计算图(Graph):搭建神经网络的计算过程,只搭建,不运算 会话(Session):执行计算图中的结点运算 神经网络的参数:即计算图中的权重,也可以说是神经元(后面会提到)线上的权重,用变量表示,一般会随机生成这些参数.生成参数的方法是让 w(神经元上的线)…
人工智能实践:TensorFlow笔记-01-开篇概述 从今天开始,从零开始学习TensorFlow,有相同兴趣的同志,可以互相学习笔记,本篇是开篇介绍 Tensorflow,已经人工智能领域的一些名词介绍 人工智能实践:TensorFlow笔记-01-概述 什么是人工智能? 人工智能:机器模拟人的意识和思维 艾伦·麦席森·图灵(1912/06--1954/06),美国数学家,逻辑学家,"计算机科学之父","人工智能之父" 人工智能助理 谷歌 Assistant,微…
TensorFlow笔记-05-反向传播,搭建神经网络的八股 反向传播 反向传播: 训练模型参数,在所有参数上用梯度下降,使用神经网络模型在训练数据上的损失函数最小 损失函数:(loss) 计算得到的预测值 y 与已知答案 y_ 差距 损失函数的计算有很多方法,均方误差MSE是比较常用的方法之一 关于损失函数,会在下一篇仔细讲 均方误差: 求前向传播计算结果与已知答案之差的平方再求平均 用 Tensorflow 函数表示: loss = tf.reduce_mean(tf.square(y-y_…