如何感性地理解EM算法?】的更多相关文章

https://www.jianshu.com/p/1121509ac1dc 如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计.个人认为,理解EM算法背后的idea,远比看懂它的数学推导重要.idea会让你有一个直观的感受,从而明白算法的合理性,数学推导只是将这种合理性用更加严谨的语言表达出来而已.打个比方,一个梨很甜,用数学的语言可以表述为糖分含量90%,但只有亲自咬一口,你才能真正感觉到这个梨有多甜,也才能真正理解数学上的90%的糖分究竟是怎么样的.如果EM是个梨,…
1.EM算法概念 EM 算法,全称 Expectation Maximization Algorithm.期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最大似然估计或极大后验概率估计. 1.1 问题描述 我们假设学校男生和女生分别服从两种不同的正态分布,即男生  ,女生  ,(注意:EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的).那么该怎样评估学生的身高分布呢? 简单啊,我们可以随便抽 100…
https://applenob.github.io/em.html EM算法总结 在概率模型中,最常用的模型参数估计方法应该就是最大似然法. EM算法本质上也是最大似然,它是针对模型中存在隐变量的情况的最大似然. 下面通过两个例子引入. 没有隐变量的硬币模型 假设有两个硬币,AA和BB,这两个硬币具体材质未知,即抛硬币的结果是head的概率不一定是50%. 在这个实验中,我们每次拿其中一个硬币,抛10次,统计结果. 实验的目标是统计AA和BB的head朝上的概率,即估计θ̂ Aθ^A和θ̂ B…
EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广义EM的再一个特例是Gibbs抽样算法 WS算法是VAE和GAN组合的简化版 KL距离的统一 第一层境界, EM算法就是E 期望 + M 最大化 最经典的例子就是抛3个硬币,跑I硬币决定C1和C2,然后抛C1或者C2决定正反面, 然后估算3个硬币的正反面概率值. &a…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率模型有时既含有观测变量(observable variable),又含有隐变量或潜在变量(latent variable),如果仅有观测变量,那么给定数据就能用极大似然估计或贝叶斯估计来估计model参数:但是当模型含有隐变量时,需要一种含有隐变量的概率模型参数估计的极大似然方法估计--EM算法 2…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…
EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值. M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 总体来说,EM算法流程如下: 1.初始化分布参数 2.重复直到收敛: E步:估未知参数的…
EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步完成: E步,求期望 M步,求极大. EM算法的引入 如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法或贝叶斯估计法估计模型参数,但是当模型中含有隐变量时,就不能简单地使用这些估计方法.因此提出了EM算法. EM算法流程 假定集合 由观测数据 和未观测数据 组成, 和 分别称为不完整数据和完整数据.假设Z的联合概率密度被参数化地定义为 ,其中 表…
1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量. 最大期望算法经过两个步骤交替进行计算, 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 极大似然估计用一句…
Expectation Maximization, 字面翻译为, "最大期望". 我个人其实一直都不太理解EM算法, 从我个人的渊源来看, 之前数理统计里面的参数估计, 也是没有太理解. 但困难总是要面对, 必须啃下它, 因其真的不太直观, 所以先举个经典的栗子. 栗子-硬币正面概率 理想我是上帝 假设咱有两个硬币, 分别为 coin A 和 coin B 同样假设我们上帝, 知道做实验是用的哪个硬币 的情况下, 扔的结果如下: (H 表正面, T表反面) B: H T T T H H…
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定义和实现 3.2 测试 4. EM算法 1. GMM模型 ​ 聚类问题是一个经典的无监督任务,其目标是将 \(N\) 个 \(D\) 维数据 \(\{\bf{x}_i\}_{i=1}^N\) 分成\(K\)个簇,使得每个簇中的样本尽可能相似.GMM算法对数据分布做了一些假设: 第\(k\)个簇数据点…
一.概述 概率模型有时既含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接利用极大似然估计法或者贝叶斯估计法估计模型参数.但是,当模型同时又含有隐变量时,就不能简单地使用这些方法.EM算法适用于带有隐变量的概率模型的参数估计,利用极大似然估计法逐步迭代求解. 二.jensen不等式   是区间 上的凸函数,则对任意的 ,有不等式:   即: E[f(X)] ≥ f(E(X))  ,因为(x1+x2+...+xn)/n=E(X),同理可得E(f(X)).当x1=x2…
http://blog.csdn.net/xmu_jupiter/article/details/50936177 最近在写毕业论文,由于EM算法在我的研究方向中经常用到,所以把相关的资料又拿出来看了一下,有了一些新的理解与感悟.在此总结一下. EM算法即“期望极大算法”.学过机器学习的朋友都知道EM算法分两步:E步求期望,M步求极大.但是期望是求谁的期望,极大是求谁的极大呢?这里面其实有两种解读角度. “通俗”角度 通俗角度的话,求极大肯定是求似然函数的极大了,而且一般都是对数似然.我们一般解…
EM算法之不同的推导方法和自己的理解 一.前言 EM算法主要针对概率生成模型解决具有隐变量的混合模型的参数估计问题. 对于简单的模型,根据极大似然估计的方法可以直接得到解析解:可以在具有隐变量的复杂模型中,用MLE很难直接得到解析解,此时EM算法就发挥作用了. E步解决隐变量的问题,M步求解模型的参数值,也就是极大似然的方法求取模型的参数值. 自己的理解:走一步看一步,走了看,看了再走,迭代过程. 首先使用估计的方式直接设置一组模型的参数值,这组模型的参数值是先验的,甚至可以说是我们瞎设的,这么…
众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北人”还是“四川人”,我想如果把这个数据集的概率密度画出来,大约是这个样子: 好了不要吐槽了,能画成这个样子我已经很用…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
EM算法中要寻找的参数θ,与K-means聚类中的质心是对应的,在高斯混合模型中确定了θ,便可为样本进行类别的划分,属于哪个高斯分布的概率大就是哪一类,而这一点与K-means中的质心一样,质心确定了,样本的类别就确定了,只不过K-means采用样本到质心的距离来衡量归属于某一类的概率,所以K-means的质心-距离机制与高斯分布是异曲同工.…
Jensen不等式 http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f是严格凸函数. Jensen不等式表述如下: 如果f是凸函数,X是随机变量,那么 特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量. 这里我们将简写为. 似然…
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的.什么是NB啊,我们一般说某个人非常NB,是由于他能解决一些别人解决不了的问题.神为什么是神,由于神能做非常多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是由于什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明确,可是,EM这个问题感觉真的不太好用通俗的…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariable).最大期望经常用在机器学习和计算机视觉的数据聚类(DataClustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中…
原文地址:https://www.cnblogs.com/to-creat/p/6075322.html 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简…
转自http://blog.csdn.net/zouxy09/article/details/8537620/ 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为…
机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Expectation-Maximization 算法,其具体内容为:给定数据集$\mathbf{X}=\{\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n\}$,假定这个数据集是不完整的,其还缺失了一些信息Y,一个完整的样本Z = {X,Y}.而且假定如果我们能得到完…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-means算法是一类无监督的聚类算法,目的是将没有标签的数据分成若干个类,每一个类都是由相似的数据组成.这个类的个数一般是认为给定的. 2. 原理 假设给定一个数据集$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2,...,\mathbf{x}_N \}$, 和类的个数K…
1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书中章节名称为Optimization) 2. 随机搜索 对于优化,一本很有名的书是Stephen Boyd 的凸优化(Convex Optimization).但看过的人可能思维会受到一点限制.最简单.最基本的求最大/最小值的算法,除了直接求解,就是把所有的可能值枚举出来,然后求最大/最小就可以了,…
对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签. 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示.,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布.这时, 我们就可以用高斯混合模型来进行描述. 怎么入手呢? 高斯混合模型: 我们这么想,因为样本集合潜在地是可以分为K类的,用z(i)表示第 i 样本所属的类别,所以z(i) 的范围为从1至 K.对于我们可…
原创博客,转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一种求解最大似然概率估计的方法.往往用在存在隐藏变量的问题上.我这里特意用"框架"来称呼它,是因为EM算法不像一些常见的机器学习算法例如logistic regression, decision tree,只要把数据的输入输出格式固定了,直接调用工具包就可以使用.可以概括为一个两步骤的框架: E-step:估计隐藏变量的概…
[转载请注明出处]http://www.cnblogs.com/mashiqi 2014/11/18 更新.发现以前的公式(2)里有错误,现已改过来.由于这几天和Can讨论了EM算法,回头看我以前写的这篇博客的时候,就发现公式里面有一个错误(多了一个连加符号),现在改正过来了.经过和Can的讨论,我又认真思考了EM算法,发现以前确实是没有弄懂这个算法的本质的.加油,以后学习知识不要只停留在表面上,要有insight!!! 2014/5/19 本文公式编辑捉鸡,请知道怎么在博客园里高效编辑公式的朋…