1.from sklearn.processing import LabelEncoder 进行标签的代码编译 首先需要通过model.fit 进行预编译,然后使用transform进行实际编译 2.from sklearn.discriminant_analysis import LinearDiscriminantAnalysis  as LDA  从sklearn的线性分析库中导入线性判别分析即LDA 用途:分类预处理中的降维,做分类任务 目的:LDA关心的是能够最大化类间区分度的坐标轴…
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片,图片为28*28像素,分别放在0~9十个文件夹中. 程序总体流程和上一篇文章介绍的BMI分析程序基本一致,毕竟都是多元…
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡萄酒案例分析),我们通过详细的步骤理解LDA内部逻辑实现原理,能够更好地掌握线性判别分析的内部机制.当然,在以后项目数据处理,我们有更高效的实现方法,这篇将记录学习基于sklearn进行LDA数据降维,提高编码速度,而且会感觉更加简单. LDA详细介绍与各步骤实现请看上回:LDA线性判别分析原理及p…
函数说明 1.LDA(n_topics, max_iters, random_state)  用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_iters表示最大的迭代次数, random_state 表示随机种子 2. LDA.components_ 打印输入特征的权重参数, LDA主题模型:可以用于做分类,好比如果是两个主题的话,那就相当于是分成了两类,同时我们也可以找出根据主题词的权重值,来找出一些主题的关键词 使用sklearn导入库…
1.dictionary = gensim.corpora.Dictionary(clean_content)  对输入的列表做一个数字映射字典, 2. corpus = [dictionary,doc2vec(cl_content) for cl_content in clean_content]  # 输出clean_content每一个元素根据dictionary做数字映射后的结果 3.lda = gensim.model.ldamodel.LdaModel(corpus=corpus,…
之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析: 线性判别 最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方…
曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. 最近想从底层学习一下机器学习的相关知识,经过初步筛选,计划定位于python + pytorch这个方向入手,经过一段时间的学习,我发现由于对python语言不太熟悉,导致实践起来比较困难,先不说机器学习相关的代码,光周边代码就搞得焦头烂额了.想要下决心好好修炼一下python必然不是一朝一夕的事…
转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…