Sqrt(X),求平方根,折半查找】的更多相关文章

Implement int sqrt(int x). Compute and return the square root of x. 这道题要求我们求平方根,我们能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,我们采用二分搜索法来找平方根,由于求平方的结果会很大,可能会超过int的取值范围,所以我们都用long long来定义变量,这样就不会越界,代码如下: 解法一 // Binary Search class Solution { public: int sqrt(i…
Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a non-negative integer. Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned. Example…
实现 int sqrt(int x) 函数.计算并返回 x 的平方根.x 保证是一个非负整数.案例 1:输入: 4输出: 2案例 2:输入: 8输出: 2说明: 8 的平方根是 2.82842..., 由于我们想返回一个整数,小数部分将被舍去.详见:https://leetcode.com/problems/sqrtx/description/ Java实现: 方法一:暴力解 class Solution { public int mySqrt(int x) { if(x<0){ return…
Implement int sqrt(int x).Compute and return the square root of x.x is guaranteed to be a non-negative integer.Example 1:Input: 4Output: 2Example 2:Input: 8Output: 2Explanation: The square root of 8 is 2.82842..., and since we want to return an integ…
算法分析:利用折半查找,降低算法复杂度.前面求x得y次幂,也是将y/2,都是为了降低复杂度. //折半查找的思想 public class Sqrt { public int sqrt(int x) { int low = 0; int high = x; while(low <= high) { long mid = (low + high)/2; if(mid*mid > x)//为了防止mid*mid溢出,将mid定义为long { high = (int)mid - 1; } else…
我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢? 虽然有可能你平时没有想过这个问题,不过正所谓是“临阵磨枪,不快也光”,你“眉头一皱,计上心来”,这个不是太简单了嘛,用二分的方法,在一个区间中,每次拿中间数的平方来试验,如果大了,就再试左区间的中间数:如果小了,就再拿右区间的中间数来试.比如求sqrt(16)的结果,你先试(0+16)/2=8,8*8=…
69. Sqrt(x) Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium 提交网址: https://leetcode.com/problems/sqrtx/ Implement int sqrt(int x). Compute and return the square root of x. 分析: 解法1:牛顿迭代法(牛顿切线法) Newton's Method(牛顿切线法)是由艾萨克·牛顿在<流数法>(M…
Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 sqrt(4) = 2 sqrt(5) = 2 sqrt(10) = 3 Challenge O(log(x)) 题意:求给定数的平方根,如果用一般的方法,例如二分法之类的,需要考虑一下int型的范围,别溢出.最好的方法时牛顿迭代法.代码如下: public class Solution { /**…
查找无序数组的中位数,要想时间复杂度为O(n)其实用计数排序就能很方便地实现,在此讨论使用快速排序进行定位的方法. 1.中位数定义 2.算法思想 3.Java代码实现 4.时间复杂度分析 5.附录 中位数一般两种定义: 第一种: 排序后数组的中间位置的值,如果数组的个数是偶数个,则返回排序后数组的第N/2个数. 第一种(官方): 排序后数组的中间位置的值,如果数组的个数是偶数个,则返回最中间两个数的平均数. 例如:{ 7, 9, 4, 5} 第一种输出5:第二种输出6.0 算法思想:大家应该都知…
今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找.本篇博客会给出相应查找算法的示意图以及相关代码,并且给出相应的测试用例.当然本篇博客依然会使用面向对象语言Swift来实现相应的Demo,并且会在github上进行相关Demo的分享. 查找在生活中是比较常见的,本篇博客所涉及的这几种查找都是基于线性结构的查找.也就是说我们的查找表是一个线性表,我…