In the previous post I go through basic 1-layer Neural Network with sigmoid activation function, including How to get sigmoid function from a binary classification problem? NN is still an optimization problem, so what's the target to optimize? - cost…
Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know the basic then you may be interested in course 4 & 5, which shows many interesting cases in CNN and RNN. Although I do think that 1 & 2 is better str…
I have finished the first course in the DeepLearnin.ai series. The assignment is relatively easy, but it indeed provides many interesting insight. You can find some summary notes of the first course in my previous 2 posts. sigmoid and shallow NN Forw…
日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Week 5: Neural Networks: Learning 本来上周开始该学习这个内容,也是先提交了作业,今天才来看看具体的代码:感觉这个课程本身对基础巩固很好.没有连续学习感觉有些有点忘了,最终的目的是自己能够推导这个内容. 本来想跟着学习搞个电子证书的,结果申请的到期时间是2017.3.31;…
I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, I found Deep Learning book written by Ian, Yoshua and Aaron much easier to understand. This post is structure in following order: Intuitive interpreta…
参考资料: 算法部分: standfor, ufldl  : http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial 一文弄懂BP:https://www.cnblogs.com/charlotte77/p/5629865.html 代码部分: siraj raval ,4分钟搭建神经网络: http://192.168.73.134/www.sohu.com/a/162305418_697750 这是我个人学习笔记,希望其他阅读者已经学习…
This is a series of Machine Learning summary note. I will combine the deep learning book with the deeplearning open course . Any feedback is welcomed! First let's go through some basic NN concept using Bernoulli classification problem as an example.…
Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 ​ 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with  nx …
目录 1 问题设置 1.1 数据集和预处理 1.2 概览整个模型 2. 创建模型模块 2.1 在优化循环中梯度裁剪 2.2 采样 3. 构建语言模型 3.1 梯度下降 3.2 训练模型 4. 结论     本文是DeepLearning.ai的第五门课作业: Character level language model - Dinosaurus Island   1 问题设置   欢迎来到恐龙岛! 6500万年前,恐龙就已经存在,并且在这种任务下它们又回来了.你负责一项特殊任务.领先的生物学研究…
最近发现一个分页查询存储过程中的的一个SQL语句,当聚集索引列的排序方式不同的时候,效率差别达到数十倍,让我感到非常吃惊 由此引发出来分页查询的情况下对大表做Clustered Scan的时候, 不同情况下会选择FORWARD 或者 BACKWARD差别,以及建立聚集索引时,选择索引列的排序方式的一些思考 废话不多,上代码 先建立一张测试表,在Col1上建立聚集索引,写入100W条数据 本文一开始没有搭建出一个更具备说服力的环境,导致效果不明显,于2016-7-23重新编辑,重建造一个更接近于真…
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43221829 本文介绍多层感知机算法,特别是详细解读其代码实现,基于Python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的gith…
Softmax回归   1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试输入,我们相拥假设函数针对每一个类别j估算出概率值.也就是说,我们估计得每一种分类结果出现的概率.因此我们的假设函数将要输入一个维的向量来表示这个估计得概率值.假设函数形式如下: 其中是模型的参数.这一项对概率分布进行归一化,舍得所有概率之和为1. softmax回归的代价函数: 上述公式是logi…
http://deeplearning4j.org/lstm.html A Beginner’s Guide to Recurrent Networks and LSTMs Contents Feedforward Networks Recurrent Networks Backpropagation Through Time Vanishing and Exploding Gradients Long Short-Term Memory Units (LSTMs) Capturing Dive…
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到我的mac系统,源代码中所有#include <malloc.h>的地方都需要…
[z]Deeplearning原文作者Hinton代码注解 跑Hinton最初代码时看到这篇注释文章,很少细心,待研究... 原文地址:>http://www.cnblogs.com/BeDPS/p/3182725.html Matlab示例代码为两部分,分别对应不同的论文: 1. Reducing the Dimensionality of data with neural networks ministdeepauto.m   backprop.m   rbmhidlinear.m 2. A…
1653: [Usaco2006 Feb]Backward Digit Sums Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 207  Solved: 161[Submit][Status][Discuss] Description FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a cer…
Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5495   Accepted: 3184 Description FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum ad…
Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5664   Accepted: 3280 Description FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum ad…
用中文把玩Google开源的Deep-Learning项目word2vec   google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到…
1653: [Usaco2006 Feb]Backward Digit Sums Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 285  Solved: 215[Submit][Status] Description FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain orde…
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
windows下载安装完最新版本的Scala(2.12.4)后,终端如下错误 C:\Users\Administrator>scala -versionException in thread "main" java.lang.VerifyError: Uninitialized object exists on backward branch 96Exception Details: Location: scala/tools/nsc/CompilerCommand.sstrin…
第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络 第二章 改善深层神经网络 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以及优化--Week1深度学习的实用层面 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以…
因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logistic Regression with a Neural Network mindset v3.ipynb 很多朋友反映找不到h5文件,我已经上传了,具体请戳h5文件 week3 Planar data classification with one hidden layer v3.ipynb week4…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…
既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有点贵,所以能听到哪儿算哪儿吧... Week one主要讲了近年来为啥Deep learning火起来了,有时间另起一贴总结一下. Week two回顾了Logistic Regression(逻辑回归).虽然它听上去已经不是一个陌生的概念了,但是每次想起时还是会迟疑一下,所以干脆记录一发备忘. 1. 逻辑回…
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None) Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule. If a…
retain_graph参数的作用 官方定义: retain_graph (bool, optional) – If False, the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to True is not needed and often can be worked around in a much more efficient way. D…
摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是[N X M] 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿. 首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的. 运行结果: 不难看出,我们构建了这样的一…
从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还是要有一些基础的.线性代数,高等数学的一些知识. Andrew NG: Deep Learning.ai 网易云课堂(中文字幕) 推荐理由: Andrew Ng老师是讲课的能手,很多人认识他是从Stanford的经典<机器学习>课程上.Andrew老师授课思路清晰,简洁明了. 这是一份优美的信息图…