nlinfit非线性回归拟合】的更多相关文章

% % 使用指定函数对下述两变量进行曲线拟合  % % y=a+k1*exp(m*t)+k2*exp(-m*t);  % % 离散点: t=[0,4,8,40],  % % y=[20.09,64.52,85.83,126.75];  % % t-自变量 y-因变量  a,m,k1,k2为常数  % % 用非线性回归nlinfit,如果数据点多些,效果会更好. 脚本: clc;clear; t=[0 4 8 40];   y=[20.09 64.52 85.83 126.75];  beta=n…
对于样本数据的散点图形如函数y=ax2+bx+c的图像的数据, 在python中的拟合过程为: ##最小二乘法 import numpy as np import scipy as sp import matplotlib.pyplot as plt from scipy.optimize import leastsq ''' 设置样本数据,真实数据需要在这里处理 ''' ##样本数据(Xi,Yi),需要转换成数组(列表)形式 Xi=np.array([1,2,3,4,5,6]) #Yi=np.…
1 函数拟合 函数拟合在工程(如采样校正)和数据分析(如隶属函数确定)中都是非常有用的工具.我这里将函数拟合分为三类:分别是多项式拟合,已知函数类型的拟合和未知函数类型的拟合.matlab中关于函数的拟合提供了很多的拟合函数,这里不再一一介绍.仅对常用的多项式拟合和已知函数类型的拟合中一部分matlab函数的使用进行介绍. 1.1多项式拟合 对于 形式的拟合函数,其中 为待定系数.我们可以使用matlab中的polyfit函数进行拟合.函数的调用形式为: coef = polyfit(xx,yy…
支持向量机和神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强.大量仿真证实,支持向量机的泛化能力强于神经网络,而且能避免神经网络的固有缺陷--训练结果不稳定.本源码可以用于线性回归.非线性回归.非线性函数拟合.数据建模.预测.分类等多种应用场合.function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2)%%% SVMNR.m%…
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y…
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所以就不重复了.这里主要讲的是sklearn包与scipy包中相关函数的区别.并且多项式回归和普通最小二乘法联系比较紧密,所以也放到此处讲了. 1.普通最小二乘法 1)文一中的数据采用sklearn包的函数拟合 from sklearn import linear_model import numpy…
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关系模式 以交通量计算的交通高峰期的模式 心跳的模式 股票市场和某些产品的销售周期 数据需要有较强的稳定性,例如”预测商店营业额“和"预测打车订单"的稳定性就比"预测某台服务器何时处于被入侵的异常状态"要强.从形成机制上讲,商店营业额和打车订单是由人的行为驱动的,风是由自…
R语言中如何使用最小二乘法 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题.         代码如下: > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y)        结果如下: $coefficients Intercept         X 0.83105…
import torch import numpy import random from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) y = x.pow(2)+0.2*torch.rand(x.size()) x,y = Variable(x),Va…
MATLAB实例:多元函数拟合(线性与非线性) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多请看:随笔分类 - MATLAB作图 之前写过一篇博文,是关于一元非线性曲线拟合,自定义曲线函数. 现在用最小二乘法拟合多元函数,实现线性拟合与非线性拟合,其中非线性拟合要求自定义拟合函数. 下面给出三种拟合方式,第一种是多元线性拟合(回归),第二三种是多元非线性拟合,实际中第二三种方法是一个意思,任选一种即可,推荐第二种拟合方法. 1. MATLA…
线性回归的首要满足条件是因变量与自变量之间呈线性关系,之后的拟合算法也是基于此,但是如果碰到因变量与自变量呈非线性关系的话,就需要使用非线性回归进行分析. SPSS中的非线性回归有两个过程可以调用,一个是分析—回归—曲线估计,另一个是分析—回归—非线性,两种过程的思路不同,这也是非线性回归的两种分析方法,前者是通过变量转换,将曲线线性化,再使用线性回归进行拟合:后者则是直接按照非线性模型进行拟合. 我们按照两种方法分别拟合同一组数据,将结果进行比较. 分析—回归—曲线估计 变量转换的方法简单易行…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
拟合椭圆首先要知道各个点的坐标,然和带入如下公式: x = [59 136 58 137 57 137 56 137 55 138 54 139 53 140 52 141 51 142 51 143 51 144 50 145 50 146 50 147 50 148 49 149 49 150 49 151 49 152 49 153 50 154 50 155 50 156 50 157 51 158 51 159 51 160 52 161 52 162 53 163 54 164 54…
定义: 最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 最小二乘法原理:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym):将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以…
原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq plt.figure(figsize=(9,9)) x=np.linspace(0,10,1000) X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78]) Y…
所解决问题: 我们知道我们的表达式是y=A+B*exp(-x.^2)-C./log(x), 而且现在我们手里面有x与y对应的一大把数据. 我们需要根据x, y的值找出最佳的A.B.C值.则我们现在借助Matlab的函数lsqcurvefit,当然你也可以使用nlinfit.lsqnonlin甚至cftool拟合工具箱.其具体用法请自己用Matlab的帮助命令进行查看.这里仅简单介绍一下常用的函数lsqcurvefit. 正文: 格式:lsqcurvefit(f,a,x,y) f: 符号函数句柄,…
1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq plt.figure(figsize=(9,9)) x=np.linspace(0,10,1000) X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78]) Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4…
非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型    非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次…
Keras实践:实现非线性回归 代码 import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import keras import numpy as np import matplotlib.pyplot as plt #顺序模型 from keras.models import Sequential #全连接层 from keras.layers import Dense from keras.optimizers…
MATLAB之数据处理+公式拟合 前言:由试验得到一组数据,对该组数据进行处理,作图分析,分析各变量的关系,期望得到拟合公式. 试验数据背景 本次试验有三个自变量:V.M.G,因变量为F,每组试验重复5次,试验目的是探寻F与三个自变量之间的关系,先定性后定量. 数据采集格式如下: 采集值与时间曲线如下: 数据处理 (1)判断有用数据,并取出存储 有用的数据是指在采集值与时间曲线图中,因变量平稳时的取值.可截取平稳区间的数据,对其求平均值,并求方差判断其稳定性. (2)单个试验数据处理 在单个试验…
作者:Z-HE链接:https://zhuanlan.zhihu.com/p/36103034来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1) polyfit 代码例子如下,拟合一个3次曲线,并画图. x = 0:1:9; y = [0 2 4 6 8 20 12 14 16 18] A=polyfit(x,y,3); z=polyval(A,x); plot(x,y,'r*',x,z,'b') 1) lsqcurvefit nlinfit 使用lsqcurv…
Minf(x)=-5x1  -4x2  -6x3                x1   -x2    +x3  <=20              3x1  +2x2 +4x3 <=42                3x1 +2x2           <=30             0<=x1,0<=x2,0<=x3 >> c=[-5,-4,-6]; >> A=[1 -1 1 3 2 4 3 2 0]; >> b=[20;42…
这个程序为简单的三层结构组成:输入层.中间层.输出层 要理清各层间变量个数 import numpy as np import matplotlib.pyplot as plt import tensorflow as tf #使用numpy生成200个随机点 x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis] noise=np.random.normal(0,0.02,x_data.shape) y_data=np.square(x_data)+noi…
一.  Levenberg-Marquardt算法 (1)y=a*e.^(-b*x)形式拟合 clear all % 计算函数f的雅克比矩阵,是解析式 syms a b y x real; f=a*exp(-b*x); Jsym=jacobian(f,[a b]); % 拟合用数据.参见<数学试验>,p190,例2 % data_1=[0.25 0.5 1 1.5 2 3 4 6 8]; % obs_1=[19.21 18.15 15.36 18.10 12.89 9.32 7.45 5.24…
clc;clear all;close all;%% 多项式拟合指令:% X = [1 2 3 4 5 6 7 8 9 ];% Y = [9 7 6 3 -1 2 5 7 20]; % P= polyfit (X,Y,3);% % x = 0:2:10;% y = polyval(P,x);% plot(x,y,X,Y,'r*');%% 指定函数拟合 x=[ 0;0.4;1.2; 2;2.8;3.6;4.4;5.2; 6;7.2; 8;9.2;10.4;11.6;12.4;13.6;14.4;1…
http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程序.该工具箱提供各种监督学习模型:前向反馈,径向基核函数和动态网络等模型.同时也提供自组织图和竞争层结构(competitive layers)的非监督学习模型.该工具箱具有设计.训练.可视化与仿真神经网络的功能.基于该工具箱可以进行数据拟合.模式识别.分类和时间序列预测及其动态系统的建模和控制.…
假设有这么一组数据, x=[4 5 6 7 8 4 8 10]'; y=[56 56 56 56 56 60 60 60]';z=[6 6 6 9 6 19 6 6]'; 要求出其平面方程z=C+Ax+By 可以使用MATLAB的regress来进行平面拟合: X = [ones(size(x,1),1) x y];b = regress(z,X); 解得:b=[-63.488372093023390;-1.406976744186046;1.402325581395351]; 分别对应上式的C…
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多项式的模型,对训练数据几乎完美拟合. 模型一没有很好的拟合训练数据,在训练数据以及在测试数据上都存在较大误差,这种情况称之为欠拟合(underfitting). 模型三对训练数据拟合的很不错,但是在测试数据上的准确度并不理想.这种对训练数据拟合较好,而在测试数据上准确度较低的情况称之为过拟合(ove…
数据的平面拟合 Plane Fitting 看到了一些利用Matlab的平面拟合程序 http://www.ilovematlab.cn/thread-220252-1-1.html…
Poor Generalization 这可能是实际中遇到的最多问题. 比如FC网络为什么效果比CNN差那么多啊,是不是陷入局部最小值啊?是不是过拟合啊?是不是欠拟合啊? 在操场跑步的时候,又从SVM角度思考了一下,我认为Poor Generalization属于过拟合范畴. 与我的论文 [深度神经网络在面部情感分析系统中的应用与改良] 的观点一致. SVM ImageNet 2012上出现了一个经典虐杀场景.见[知乎专栏] 里面有一段这么说道: 当时,大多数的研究小组还都在用传统compute…