Description: 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长…
洛谷传送门,BZOJ传送门 树网的核 Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V, E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a,b)为a,b两结点间的距离. 一点v到一条路径P的距离为该点与P上的最近的结点的距离:…
一道树的直径 树网的核 BZOJ原题链接 树网的核 洛谷原题链接 消防 BZOJ原题链接 消防 洛谷原题链接 一份代码四倍经验,爽 显然要先随便找一条直径,然后直接枚举核的两个端点,对每一次枚举的核遍历核上的每个点,用\(dfs\)求出核外节点到核的最大值即可,时间复杂度为\(O(n^3)\),这在\(NOIP\)的原数据范围下是可以过的,但对于数据加强版就必须要优化了. 发现当枚举到直径上的某个点时,核的另一端在不超过\(s\)的前提下显然越远越好.这样就直接优化掉一个\(n\)了,但我们还可…
题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长的路径成为树网的…
写在前面:由于是双倍经验就放一块了,虽然数据范围差的有点大. 题目链接 题意:在树的直径上选择一条长度不超过s的路径使这条路径上的点到树上任意点的最大距离最小. 这题数据好像非常水,我写了上界n^2不考虑多条直径还能过?不知道什么操作. 我就说说我的水法吧.dfs两遍求直径.处理直径上路径到直径两端的距离.然后再处理直径上每个点的最远距离,取min. 正确性显然. #include<bits/stdc++.h> #define mk make_pair using namespace std;…
P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网…
传送门 80分 $ Floyd $ 树的直径可以通过枚举求出.直径的两个端点$ maxi,maxj $ ,由此可知对于一个点 $ k $ ,如果满足 $ d[maxi][k]+d[k][maxj]==d[maxi][maxj] $ 那么 $ k $ 点一定在直径上.分别枚举位于直径上的起点 $ s $ 与终点 $ t $ . $ ecg $ 定义为 $ max{d(v,F)} $ 那么枚举出的线段的 $ ecg $ 一定为: $ max{min{d[maxi][s],d[maxi][t]},mi…
传送门 之前看李煜东的书一直感觉是道神题. 然后发现这题数据范围只有300?300?300? 直接上floydfloydfloyd然后暴力就完了啊. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans&l…
题意:找到第k个无平方因子数. 解法:这道题非常巧妙的运用了莫比乌斯函数的性质! 解法参考https://www.cnblogs.com/enzymii/p/8421314.html这位大佬的.这里我说下自己的理解: 首先看到K这么大,想到可能要二分答案.那么我们二分答案M,问题就变成计算<=M的数有多少个无平方因子数. 我们考虑这样一个算法:枚举<=M的每一个无平方因子数,然后枚举它的倍数将其去掉.但是这个方法有一个问题就是会重复删除,例如一个数 2*3*5 ,他会被2/3/5分别删除一次,…
洛谷P1808 单词分类_NOI导刊2011提高(01) 题目描述 Oliver为了学好英语决定苦背单词,但很快他发现要直接记住杂乱无章的单词非常困难,他决定对单词进行分类. 两个单词可以分为一类当且仅当组成这两个单词的各个字母的数量均相等. 例如“AABAC”,它和“CBAAA”就可以归为一类,而和“AAABB”就不是一类. 现在Oliver有N个单词,所有单词均由大写字母组成,每个单词的长度不超过100.你要告诉Oliver这些单词会被分成几类. 输入格式 输入文件的第一行为单词个数N,以下…