CF1213G Path Queries】的更多相关文章

题目链接 问题分析 直接按边从小到大加入,求所有的连通点对数量即可.最后离线询问.使用并查集维护Size. 参考程序 #include <bits/stdc++.h> using namespace std; const int Maxn = 200010; const int MaxAlpha = 200000; struct edge { int u, v, w; edge() {} edge( int _u, int _v, int _w ) : u( _u ), v( _v ), w(…
[CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出现时间是区间,所以线段树分治. 既然路径最小值就是异或最小值,并且可以不是简单路径, 不难让人想到\(WC2011\)那道最大\(Xor\)路径和. 用一样的套路,我们动态维护一棵生成树,碰到一个非树边, 就把这个环的异或和丢到线性基里面去,这样子直接查就好了. 动态维护生成树直接用并查集就好了,没…
这两道都用到了线段树分治和按秩合并可撤销并查集. Shortest Path Queries 给出一个连通带权无向图,边有边权,要求支持 q 个操作: x y d 在原图中加入一条 x 到 y 权值为 d 的边 x y 把图中 x 到 y 的边删掉 x y 表示询问 x 到 y 的异或最短路 保证任意操作后原图连通无重边自环且操作均合法 n,m,q≤200000 题解 与WC2011 最大XOR和路径一样,先考虑没有加边删边的做法 做出原图的任意一棵生成树 把每个非树边和树边形成的环丢进线性基里…
洛谷 Codeforces 分治的题目,或者说分治的思想,是非常灵活多变的. 所以对我这种智商低的选手特别不友好 脑子不好使怎么办?多做题吧-- 前置知识 线性基是你必须会的,不然这题不可做. 推荐再去看看洛谷P4151. 思路 看到异或最短路,显然线性基. 做题多一些的同学想必已经想到了"洛谷P4151 [WC2011]最大XOR和路径"了. 先考虑没有加边删边的做法: 做出原图的任意一棵生成树: 把每个非树边和树边形成的环丢进线性基里: 询问时把两点在树上的路径异或和丢进线性基里求…
首先只有询问的话就是个WC的题,线性基+生成树搞一搞就行. 进一步,考虑如果修改操作只有加边怎么做. 好像也没有什么变化,只不过需要在线地往线性基里插入东西而已. 删边呢? 注意到线性基这个玩意是不支持删除操作的. 对于这种不好删除的的东西有种不错的解决方法,就是线段树分治. 把每个操作劈成logn个区间以后来搞一下. 按照线段树分治的套路,通过遍历整棵线段树来获得答案. 发现需要一个可以动态维护支持加/删边的生成树的东西. 能做到这个的无非就两个数据结构,按秩合并的并查集和LCT. 这里使用按…
又到了喜闻乐见的写博客清醒时间了233,今天做的依然是线段树分治 这题算是经典应用了吧,假的动态图(可离线)问题 首先不难想到对于询问的时间进行线段树分治,这样就可以把每一条边出现的时间区间扔进线段树里,考虑如何维护答案 初步的想,图上两点间异或最小值,和最大值类似.先求出一棵生成树,然后把环扔进线性基里,每次查询两点间异或值之后再扔进线性基里求最小值即可 正确性的话,因为这样环一定是有树边+非树边构成的,我们可以在任意一个点走到一个环再绕回来,中间重复走的树边因为走了两次相当于没有影响 然后我…
题意 给定n个结点的树,每条边有边权,有m个询问,每个询问给一个\(q_i\)输出树上有多少点对的简单路径上最大的边权不超过\(q_i\). 分析 用并查集维护点集,同时维护大小. 将所有边按边权排序,考虑每次从小到大加边,图中经过当前边的所有路径一定是以当前边的边权为最大值的,用并查集维护下图中每个联通块的大小,经过当前边的路径数即为\(sz[find(u)]*sz[find(v)]\).然后前缀和一下就可以\(O(1)\)询问了. Code #include<bits/stdc++.h>…
cf题面 中文题面 给一棵无根树,每条边有边权.然后q个询问,每次询问给个w,求树上有多少对点之间的路径上的最大值小于等于w. 解题思路 离线.先把所有边按照边长升序排序,再把所有询问按照w升序排序. 之后从小到大处理每个询问.对于一个询问,首先由于询问已经排好序了,所以前一个答案是之前加的边对于答案的贡献,我们就先把上一个询问的答案直接复制过来,之后把小于等于这个询问的w的所有边加入到树上,然后并查集更新答案:每加一条边,对答案产生的贡献是"这条边两端的连通块"大小之积. 之后恢复顺…
题目:https://vjudge.net/contest/323699#problem/A 题意:给你一棵树,然后有m个查询,每次查询问一条路径最大边小于给定查询的数量 思路:首先我们看到,我们其实可以计算出每个边权小于查询的所有连通块,然后sum+C(n,2),对每个连通块都加上值,然后就是答案了,但是这里注意查询数很多,我们肯定不能O(n)遍历每个查询,但是思路肯定是计算联通块里组合数的数量,怎么处理呢,我们注意到,他这个边权是的值的大小和我的连通块的有关,我们是否可以利用之前求出来的值呢…
正解:线段树分治+线性基 解题报告: 传送门$QwQ$ 考虑如果只有操作3,就这题嘛$QwQ$ 欧克然后现在考虑加上了操作一操作二 于是就线段树分治鸭 首先线段树叶子节点是询问嘛这个不用说$QwQ$.然后把每条边放到所有它存在的区间上. 然后处理询问的话就$dfs$遍历线段树,删边操作就可以直接按栈序撤销了 最后梳理下这题的大致思路趴$QwQ$.首先以询问为节点建一棵线段树,并把每条边放到所有它会出现的节点处,然后$dfs$整棵线段树计算答案. 具体说下$dfs$的过程趴$QwQ$. 首先显然是…