机器学习可分为监督学习和无监督学习.有监督学习就是有具体的分类信息,比如用来判定输入的是输入[a,b,c]中的一类:无监督学习就是不清楚最后的分类情况,也不会给目标值. K-近邻算法属于一种监督学习分类算法,该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 需要进行分类,分类的依据是什么呢,每个物体都有它的特征点,这个就是分类的依据,特征点可以是很多,越多分类就越精确. 机器学习就是从样本中学习分类的方式,那么就需…