19、NumPy——线性代数】的更多相关文章

NumPy 线性代数 NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明: 函数 描述 dot 两个数组的点积,即元素对应相乘. vdot 两个向量的点积 inner 两个数组的内积 matmul 两个数组的矩阵积 determinant 数组的行列式 solve 求解线性矩阵方程 inv 计算矩阵的乘法逆矩阵 1.numpy.dot() numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积):对于…
NumPy - 线性代数 NumPy 包包含numpy.linalg模块,提供线性代数所需的所有功能. 此模块中的一些重要功能如下表所述. 序号 函数及描述 1. dot 两个数组的点积 2. vdot 两个向量的点积 3. inner 两个数组的内积 4. matmul 两个数组的矩阵积 5. determinant 数组的行列式 6. solve 求解线性矩阵方程 7. inv 寻找矩阵的乘法逆矩阵 numpy.dot() 此函数返回两个数组的点积. 对于二维向量,其等效于矩阵乘法. 对于一…
Numpy 提供了线性代数库 linalg , 该库包含了线性代数所需的所有功能,可以看卡下面的说明: 函数 描述 dot 两个数组的点积, 即元素对应相乘 vdot 两个向量的点积 inner 两个数组的内积 matmul 两个数组的矩阵阵积 determinant 数组的行列式 solve 求解线性矩阵方程 inv 计算矩阵的乘法逆矩阵 numpy.dot() numpy.dot()对于两个一维的数组,计算的是这两个数组的对应下标元素的乘机和数学上称之为内积(:碎玉二维数数组,计算的是两个数…
import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) print(np.dot(a,b)) numpy.vdot() 函数是两个向量的点积. 如果第一个参数是复数,那么它的共轭复数会用于计算. 如果参数是多维数组,它会被展开. import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11…
转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/details/39087583 在介绍工具之前先对理论基础进行必要的回顾是很必要的.没有理论的基础,讲再多的应用都是空中楼阁.本文主要设涉及线性代数和矩阵论的基本内容.先回顾这部分理论基础,然后给出MATLAB,继而给出Python的处理.个人感觉,因为Python是面向对象的,操纵起来会更接近人的正…
numpy 模块(多维数组) import numpy as np arr=np.array([1,2,3,4],[5,6,7,8]) print(arr) #[[1 2 3 4] #[5 6 7 8]] arr.shape #(2, 4) 得到的是这个数组有多少行 多少列 #多维数组的索引 arr.shape[0] #2 得到的是行数 arr.shape[1] #4 得到的是列数 arr[1,2] #7 按索引取值 高级功能 import numpy as ap arr = np.array(…
Python Numpy线性代数函数操作 1.使用dot计算矩阵乘法 import numpy as np from numpy import ones from __builtin__ import int print 'Matrix multiplication' mat23 = np.arange(1,7).reshape(2,3) mat32 = np.arange(-1,-7,-1).reshape(3,2) dotMatrix = np.dot(mat32,mat23)print d…
数组的累加(拼接) 在前面讲了使用切片方法能够对数组进行切分,使用copy对切片的数组进行复制,那么数组该如何拼接呢? a1 = np.full((2,3),1)#填充数组 a2 = np.full((3,3),2) a3 = np.full((2,3),3) >>a3 array([[ 3., 3., 3.], [ 3., 3., 3.]]) vstack 竖直方向拼接数组 a4 = np.vstack((a1,a2,a3)) #a1,a2,a3必须有相同的列数 >> a4 [[…
NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用NumPy,开…
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设arr为numpy.ndarray的一个实例化对象 1. NumPy简介 NumPy是python运用于数据分析.科学计算最重要的库之一 由于numpy底层是用C/C++写的,在性能和速度上都有较大的提升,能用NumPy的地方就多用NumPy 官网:www.numpy.org 约定俗成的NumPy模…