simhash文本相似度比较】的更多相关文章

simhash 在simhash中处理一个文本的步骤如下: 第一步,分词: 对文本进行分词操作,同时需要我们同时返回当前词组在文本内容中的权重(这基本上是目前所有分词工具都支持的功能). 第二步,计算hash: 对于每一个得到的词组做hash,将词语表示为到01表示的bit位,需要保证每个hash结果的位数相同,如图中所示,使用的是8bit. 第三步,加权 根据每个词组对应的权重,对hash值做加权计算(bit为1则取为1做乘积,bit为0则取为-1做乘积),如上图中, 10011111与权重2…
本文由云+社区发表 作者:netkiddy 导语 AI在2018年应该是互联网界最火的名词,没有之一.时间来到了9102年,也是项目相关,涉及到了一些AI写作相关的功能,为客户生成一些素材文章.但是,AI并不一定最懂你,客户对于AI写出来的文章,多少是会做些修改的.为了更好的衡量出AI文章的可用度,在这儿就会需要存有一个反馈的环节,来看看用户润色后的文章与原始AI文章之间的区别是多大,AI写出来的文章可用性是否足够.由于目前还没精力细究AI写作其中的细节,为了更好地计算每次成文与原文的区分,便花…
[TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度量方式,我们便可以利用划分法的K-means.基于密度的DBSCAN或者是基于模型的概率方法进行文本之间的聚类分析:另一方面,我们也可以利用文本之间的相似性对大规模语料进行去重预处理,或者找寻某一实体名称的相关名称(模糊匹配).而衡量两个字符串的相似性有很多种方法,如最直接的利用hashcode,以…
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起到一定纠正作用.单位主要针对科技项目申报审核,传统的方式人力物力比较大,且伴随季度性的繁重工作,效率不高.基于此,单位觉得开发一款可以达到实用的智能查重系统.遍及网络文献,终未得到有价值的参考资料,这个也是自然.首先类似知网,paperpass这样的商业公司其毕业申报专利并进行保密,其他科研单位因发…
前阵子做了一些IT opreation analysis的research,从产线上取了一些J2EE server运行状态的数据(CPU,Menory...),打算通过训练JVM的数据来建立分类模型,用于server状态的分类.这个过程中发现最难的地方就是构建训练数据集,训练数据必须要有明确的type flag,用以表示数据向量采集当时,server所处的状态类别.简单的说,就是大家不清楚哪些数据代表正常,哪些数据代表异常,哪些数据代表临界状态,甚至不知道server应该有几种明确的状态.出现这…
1.信息检索中的重要发明TF-IDF TF-IDF是一种统计方法,TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类.TF词频(Term Frequency)指的是某一个给定的词语在该文件中出现的次数.IDF反文档频率(Inverse Document Frequency)的主要思想是:如果包含词条的文档越少,IDF越大,则说明词条具有很好的类别区分能力. 1.1TF Term frequenc…
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现了word2vec功能,以便进行进一步的处理. 具体API看官网:https://radimrehurek.com/gensim 中文分词 中文需要分词,英文就不需要了,分词用的 jieba . def segment(d…
这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n-gram的结合可看我的这篇文章:https://www.cnblogs.com/Luv-GEM/p/10543612.html 用TF-IDF来分析文本的相似度可看阮一峰大佬的文章:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.h…
这个比较文本用到的主要是余弦定理比较文本相似度,具体原理右转某度,主要适用场景是在考试系统中的简答题概述,可根据权重自动打分,感觉实用性蛮广的. 先说下思路: 文本分词,中文于英文不同,规范的英文每个都有空格自动分词,中文则是连成长串,我们只有一一比对每个词出现的频率做简单的比较,在这里使用到了SCWS的一个分词api接口http://www.ftphp.com/scws/api.php(仅支持POST,因为要模拟Http请求,所以请求时间也是根据具体环境而定,所以可以自己手写一些字典,本地分词…
NLP文本相似度 相似度 相似度度量:计算个体间相似程度 相似度值越小,距离越大,相似度值越大,距离越小 最常用--余弦相似度:​ 一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小 余弦值接近1,夹角趋于0,表明两个向量越相似 如果向量a和b不是二维而是n维 ​ 示例 句子1:这只皮鞋号码大了,那只号码合适 句子2:这只皮鞋号码不小,那只更合适 ​分词 句子1:这只/皮鞋/号码/大了,那只/号码/合适 句子2:这只/皮鞋/号码/不/小,那只/更/合适 ​列出所有词 这只,皮鞋,号…
现在有个需求是这样子的:需要计算搜索词的权重设置其为总排序权重的0.6,其他因素的权重为0.4其他因素中还有详细的划分.这里我们用Solr如何来实现?众所周知solr默认的排序方式为按照文本相似度来进行降序排列的,现在我们要将打分的Score作为排序的一个因子来利用.就需要单独的获取到Score.网上是有一些通过继承类来实现的方式的.这里我不再累述,而说一种通过Solr内置的函数来实现的方式. solr提供了函数查询的方式,也能用函数的计算结果来作为排序的字段.我们用solr的函数是可以拿到查询…
本篇博文是数据挖掘部分的首篇,思路主要是先聊聊相似度的理论部分,下一篇是代码实战.       我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较.只有通过比较才能得出结论,究竟是相同还是不同.但是万物真的有这么极端的区分吗?在我看来不是的,生活中通过“相似度”这词来描述可能会更加准确.比如男人和女人,虽然生理器官和可能思想有些不同,但也有相同的地方,那就是都是人,就是说相似度不为0:比如石头与小草,它们对于虚拟类都是一种实体类,相似度也不…
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DNN的结构来对数据进行降维度,本文用CNN的结构对数据进行降维. 2. CNN-DSSM CNN-DSSM在DSSM的基础上改进了数据的预处理和深度 2.1 CNN-DSSM架构 CNN-DSSM的架构图如下: 输入:\(Query\)是代表用户输入,\(document\)是数据库中的文档. wor…
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文准备换一个思路,从深度学习的角度来处理文本相似度的问题. 本文介绍DSSM(Deep Structured Semantic Models)深度学习架构. 2. DSSM原理 DSSM的原理很简单,通过搜索引擎里Q…
设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向量v0[m+1] 和v1[m+1],串联0..m之间所有的元素. 2 初始化 v0 to 0..m. 3 检查 s (i from 1 to n) 中的每个字符. 4 检查 t (j from 1 to m) 中的每个字符 5 如果 s[i] 等于 t[j],则编辑代价cost为 0:如果 s[i] 不等于…
基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim:进行语料库制作和算法训练 结巴(jieba)分词 在自然语言处理领域中,分词和提取关键词都是对文本处理时通常要进行的步骤.用Python语言对英文文本进行预处理时可选择NLTK库,中文文本预处理可选择jieba库.结巴分词是基于统计的分词方法,它对给出大量已经分词的文本,利用统计机器学习模型学习词语…
Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性. 评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观. 那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大. 这是从…
http://blog.csdn.net/chencheng126/article/details/50070021 参考于这个博主的博文. 原理 1.文本相似度计算的需求始于搜索引擎. 搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户. 2.主要使用的算法是tf-idf tf:term frequency 词频 idf:inverse document frequency 倒文档频率 主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其…
环境描述 Python环境:Python 3.6.1 系统版本:windows7 64bit 文件描述 一共有三个文件,分别是:file_01.txt.file_02.txt.file_03.txt file_01.txt文件内容: 我吃过糖之后,发现我的牙齿真的很疼 file_02.txt文件内容: 牙疼不是病疼起来要人命. file_03.txt文件内容: 我的肚子不舒服!与此同时,牙疼也让我接近崩溃 文本相似度分析步骤 打开并读取文档内容 对要进行分析的文档分词 格式化文档 计算词频(可以…
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有词向量空间 SVM 等介绍 http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed-english/Ch27b_ir2-vectorspace-95.pdf 专门介绍向量空间 https://courses.…
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from gensim import corpora,models,similarities import codecs def cut_words(file): with open(file, 'r',encoding="utf-8") as f: text = f.read() words = j…
C# 采用动态规划算法,计算两个字符串之间的相似程度. public static double CountTextSimilarity(string textX, string textY, bool isCase = false) // 计算文本相似度 { if (textX.Length <= 0 || textY.Length <= 0) { return (0); } if (!isCase) { textX = textX.ToLower(); textY = textY.ToLo…
不废话直接代码吧 # 1.模块导入 import jieba import gensim from gensim import corpora from gensim import models from gensim import similarities # 2.制作问题库 # 2.制作问题库 l1 = ["你叫什么名字", "你的姓名是什么", "你的体重是多少", "你的年龄是多少"] # 问题库 # 3.对问题样本和…
余弦相似性 原理:首先我们先把两段文本分词,列出来所有单词,其次我们计算每个词语的词频,最后把词语转换为向量,这样我们就只需要计算两个向量的相似程度.   我们简单表述如下   文本1:我/爱/北京/天安门/ 经过分词求词频得出向量(伪向量)  [1,1,1,1]   文本2:我们/都爱/北京/天安门/ 经过分词求词频得出向量(伪向量)  [1,0,1,2]   我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向.两条线段之间形成一个夹角,如果夹角为0…
比较两个文本的相似度 这里采用 simHash 算法 ; 分词是 基于 http://hanlp.linrunsoft.com/ 的开源 中文分词包 来实现分词 ; 实现效果图: 直接上源码: https://pan.baidu.com/s/1hr4ymKs kbih…
摘自:http://www.programcreek.com/java-api-examples/index.php?source_dir=textmining-master/src/com/gta/simhash/SimHash.java package com.gta.simhash; public class Test { public static void main(String[] args) { // TODO Auto-generated method stub String s…
1,$TF-IDF$算法 $TF$是指归一化后的词频,$IDF$是指逆文档频率.给定一个文档集合$D$,有$d_1, d_2, d_3, ......, d_n \in D$.文档集合总共包含$m$个词(注:一般在计算$TF-IDF$时会去除如“的”这一类的停用词),有$w_1, w_2, w_3, ......, w_m \in W$.我们现在以计算词$w_i$在文档$d_j$中的$TF-IDF$指为例.$TF$的计算公式为: $ TF = \frac{freq(i, j)} {max_{le…
参考链接:https://blog.csdn.net/whzhcahzxh/article/details/17528261 demo1:结巴分词: # 构造分词库,格式如下: ''' [['楼下', '买', '水果', '这家', '店', '价格比', '店要', '高', '', '', '%', '价格', '太高', '老板', '说', '老板', '您好', '家', '水果', '很漂亮', '新鲜', '进货', '价格', '挺', '高', '我刚', '搬', '喜欢'…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
编写此脚本的目的: 本人从事软件测试工作,近两年发现项目成员总会提出一些内容相似的问题,导致开发抱怨.一开始想搜索一下是否有此类工具能支持查重的工作,但并没找到,因此写了这个工具.通过从纸上谈兵到着手实践,还是发现很多大大小小的问题(一定要动手去做喔!),总结起来就是理解清楚参考资料.按需设计.多角度去解决问题. 脚本进行相似度分析的基本过程: 1.获取Bug数据.读取excel表,获取到“BugID”和“Bug内容” 2.获取指定格式的Bug关键字集合.使用“jieba包”,采用“搜索模式”,…