线性时间求取第 K 大数】的更多相关文章

求 Top K 的算法主要有基于快速排序的和基于堆的这两种,它们的时间复杂度都为 \(O(nlogK)\).借助于分治思想,以及快速排序的区间划分,我们可以做到 \(O(n)\) 时间复杂度.具体算法思路如下: 第 1 步,我们将原数据 5 个一组划分为若干个组,最后余下的不足 5 个的额外作为一组,总组数为 \(g=\lceil{n/5}\rceil\): 第 2,3 步, 对每一个组内的 5 个元素利用插入排序算法进行排序,然后将每个组的中位数依次放到数据的前面,最后 \(A[0, g-1]…
题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用的方法有很多,我听过的只有主席树.整体二分法.划分树.分块…… 因为是看<挑战>书介绍的平方分割方法(分块),所以先把分块说了,其他的坑以后再填 分块算法思想是将区间分为若干块,一般分为 n1/2 块然后在每块维护所需信息,可以把复杂度降到 O(根号n) 具体的分析和代码在<挑战程序设计竞赛…
题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数和. 划分树: [1  6  3  8  5  4  7  2] [6  8  5  7][1  3  4  2] [8  7][6  5][3  4][1  2] [8][7][6][5][4][3][2][1] 把快排的结果从上至下依次放入线段树,就构成了划分树,划分的意思就是选定一个数,把原序…
对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思路例如以下: 1.分解:将A[p,r]分解成A[p,q-1]和A[q+1,r]两部分.使得A[p,q-1]都小于A[q],A[q+1,r]都不小于A[q]; 2.求解:假设A[q]恰好是第k小元素直接返回,假设第k小元素落在前半区间就到A[p,q-1]递归查找.否则到A[q+1,r]中递归查找. 3…
题目大意:求xor所有值的第k小,线性基模板题. #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<iostream> #include<cmath> using namespace std; typedef long long ll; ; ll ],a[],n,m; //构造线性基,也可用来判断x是否存在,最后返回是否等…
--本文为博主原创,转载请注明出处 因为最近做的WSN(wireless sensor network)实验要求用3个传感器节点接受2000个包的数据并算出一些统计量,其中就有算出中位数这么一个要求,且其按算出数据的时间长短排名给分,所以就在考虑一个线性时间的求第k大小的数的算法. 鉴于传感器只有10k的内存,以及考虑到快排的过程利于简化,所以采用快速排序(以及由之前课程中做的排序算法的测试得知,快排在相同时间复杂度的排序中有较大的优越性,最重要的就是快排好写). 算法基本思想 快速排序的思想就…
题目链接 题意:给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 \(T \subseteq S\), 使得集合 T 在 S 的所有非空子集的不同的异或和中, 其异或和 \(T_1 \mathbin{\text{xor}} T_2 \mathbin{\text{xor}} \ldots \mathbin{\text{xor}}T_{|T|}\)是第 k 小的. /* 1.照例建立线性基 2.使得线性基中有且只有base[i]的第i位为1 3.记录所有有值的base[] 从低位到…
运用快速排序的思想,可以达到线性时间找到一串数的第K大 #include<cstdio> #define F(i,a,b) for(int i=a;i<=b;i++) ],n; void swap(int &a,int &b){int c=a;a=b,b=c;} int partition(int *a,int l,int r){ int x=a[l],pos=l; ;i<=r;i++) if(a[i]<x)swap(a[++pos],a[i]); swap(…
相关介绍:  求取数组中最大连续子序列和问题,是一个较为"古老"的一个问题.该问题的描述为,给定一个整型数组(当然浮点型也是可以的啦),求取其下标连续的子序列,且其和为该数组的所有子序列和中值为最大的.例如数组A={1, 3, -2, 4, -5},则最大连续子序列和为6,即1+3+(-2)+ 4 = 6.解决该问题的算法有四种,根据其时间复杂度的高低,下面分别为这四种算法做介绍. 第一种:时间复杂度为O(N^3)  该算法也是最容易想到的,很直观的算法,其算法的思路为,穷举数组中以某…
XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0…