二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 它的左.右子树也分别为二叉排序树. 以前只是知道又这么一种树但是没怎么去了解,这次查看了算法导论上介绍的思路, 用php写了个例子. 节点类 BST树类 二叉搜索树样图 下面介绍下大致的操作 一  遍历 二叉搜索树可以通过简单的递归来遍历所有…
二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历   二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别为二叉搜索树.(摘自百度百科) 给定一系列互不相等的整数,将它们顺次插入一棵初始为空的二叉搜索树,然后对结果树的结构进行描述.你需要能判断给定的描述是否正确.例如将{ 2 4…
二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别为二叉搜索树.(摘自百度百科) 给定一系列互不相等的整数,将它们顺次插入一棵初始为空的二叉搜索树,然后对结果树的结构进行描述.你需要能判断给定的描述是否正确.例如将{ 2 4 1 3 0 }插入后,得到一棵二叉搜索树,则陈述句如“2是树的根”.“1和4是兄弟结点”.“3…
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么作用呢? 我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是: 显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)! 如…
树集合了数组(查找速度快)和链表(插入.删除速度快)的优点 二叉树是一种特殊的树,即:树中的每个节点最多只能有两个子节点 二叉搜索树是一种特殊的二叉树,即:节点的左子节点的值都小于这个节点的值,节点的右子节点的值都大于等于这个节点的值 节点类: public class Node { public int id; public String name; public Node leftChild; public Node rightChild; public Node(int id, Strin…
转载请注明出处 一.概念 二叉搜索树也成二叉排序树,它有这么一个特点,某个节点,若其有两个子节点,则一定满足,左子节点值一定小于该节点值,右子节点值一定大于该节点值,对于非基本类型的比较,可以实现Comparator接口,在本文中为了方便,采用了int类型数据进行操作. 要想实现一颗二叉树,肯定得从它的增加说起,只有把树构建出来了,才能使用其他操作. 二.二叉搜索树构建 谈起二叉树的增加,肯定先得构建一个表示节点的类,该节点的类,有这么几个属性,节点的值,节点的父节点.左节点.右节点这四个属性,…
1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不支持随机访问,特定元素的查找效率为线性复杂度O(1),效率较低. 向量和链表的优缺点是互补的,那么有没有办法兼具两者的优点呢?这便引出了接下来需要介绍的数据结构——二叉搜索树(Binary Search Tree). 二叉搜索树和链表类似,同样是以节点为单位存储数据的链式数据结构.二叉搜索树作为一种…
1.二叉搜索树基本概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是一棵具有如下特性的非空二叉树: (1)若它的左子树非空,则左子树上所有结点的关键字均小于根结点的关键字: (2)若它的右子树非空,则右子树上所有结点的关键字均大于(允许的话,也可大于等于)根结点的关键字: (3)左右子树本身又各是一个二叉搜索树. 根据二叉搜索树的特点知:对二叉搜索树进行中序遍历得到的结点序列必然是一个有序序列. #include<stdio.h> #include<stdlib.h> #de…
计算机里面的数据结构 树 在计算机存储领域应用作用非常大,我之前也多次强调多磁盘的存取速度是目前计算机飞速发展的一大障碍,计算机革命性的的下一次飞跃就是看硬盘有没有质的飞跃,为什么这么说?因为磁盘是永久性存储设备(在相当长的时间内都可以用),就这一点虽然内存在性能方面优势巨大但是保存信息和数据还是要靠磁盘. 数最成功的要数B+tree和LSM-tree了,在关系型数据库和非关系型数据库(Nosql)可谓是处于主导地位,RocksDB目前在nosql和newsql中都大放光彩,其存储引擎就是LSM…
上图: 这是二叉搜索树(也有说是查找树的)基本结构:如果y是x的左子树中的一个结点,那么y.key <= x.key(如a图中的6根结点大于它左子树的每一个结点 6 >= {2,5,5}),如果y是x的右子树中的一个结点,那么y.key >x.key 注:不同堆,堆是中间的结点最大或最小,而二叉搜索树是左中右的大小顺序,我们用这个特性来遍历二叉搜索树得到是他的顺序排列(中序遍历)#中在什么地方就叫什么遍历 如前序遍历:中左右  后序:左右中 如图a他的中序遍历为 2->5->…