Spark map-side-join 关联优化】的更多相关文章

在spark中要进行join操作,如果在shuffle的时候进行join效率较低.如果满足 所需要join的表中有一张表较小,那么可以考虑在map端进行join操作. 转载:http://blog.csdn.net/lsshlsw/article/details/50834858 将多份数据进行关联是数据处理过程中非常普遍的用法,不过在分布式计算系统中,这个问题往往会变的非常麻烦,因为框架提供的 join 操作一般会将所有数据根据 key 发送到所有的 reduce 分区中去,也就是 shuff…
最近在准备抽取数据的工作.有一个id集合200多M,要从另一个500GB的数据集合中抽取出所有id集合中包含的数据集.id数据集合中每一个行就是一个id的字符串(Reduce side join要在每行的行尾加“,”号,而Map side join不必,如果加了也可以处理掉),类似,500GB的数据集合中每一行是某一id对应的全记录,用“,”号分隔. 为什么不在hive或者pig下面搞这个操作呢?主要是因为Hive配置了Kerberos认证之后,还有一个问题没有解决,包含metastore的主机…
spark基础知识请参考spark官网:http://spark.apache.org/docs/1.2.1/quick-start.html 无论是mapreduce还是spark ,分布式框架的性能优化方向大致分为:负载均衡.网络传输和磁盘I/O 这三块.而spark是基于内存的计算框架,因此在编写应用时需要充分利用其内存计算特征.本篇主要针对 spark应用中的join问题进行讨论,关于集群参数的优化会在另一篇文章中提及. 在传统的数据库平台和分布式计算平台,join的性能消耗都是很可观的…
原文地址:Spark SQL 之 Join 实现 Spark SQL 之 Join 实现 涂小刚 2017-07-19 217标签: spark , 数据库 Join作为SQL中一个重要语法特性,几乎所有稍微复杂一点的数据分析场景都离不开Join,如今Spark SQL(Dataset/DataFrame)已经成为Spark应用程序开发的主流,作为开发者,我们有必要了解Join在Spark中是如何组织运行的. SparkSQL总体流程介绍 在阐述Join实现之前,我们首先简单介绍SparkSQL…
Spark调优,性能优化 1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合…
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别需要消耗网络资源,它传输的数据量越少,对作业的运行时间越有意义,在这种情况下,我们可以对输出进行一个压缩.输出压缩之后,reducer就要接收,然后再解压,reducer处理完之后也需要做输出,也可以做压缩.对于我们程序而言,输入的压缩是我们原来的,不是程序决定的,因为输入源就是这样子,reduce…
[提出问题] 从数据表t通过分页查询的方式读取数据,读取时要根据a1排序.t有80万行记录,当OFFSET很大时,读取速度很慢.优化后查询速度提升很快. 下图是表的定义,一共有几十个字段,RowLength大概500字节.除了主键,没有其他索引. CREATE TABLE `t` ( `a0` ) NOT NULL, `a1` ) NOT NULL, `a2` ,) NOT NULL DEFAULT '0.000000000', `a3` ,) NOT NULL DEFAULT '0.00000…
知识点1:创建关联Hbase的Hive表 知识点2:Spark访问Hive 知识点3:Spark访问与Hbase关联的Hive表 知识点1:创建关联Hbase的Hive表 两种方式创建,内部表和外部表 内部表,如果删除hive表,hbase表也会删除:不建议使用这种方式,大多数都是关联进行查询操作 外部表,如果删除hive表,hbase表不受影响: hive使用的还是存储在hbase中的数据. 这里创建外部表. CREATE EXTERNAL TABLE tdatafromhbase(key s…
目录 1.   InnoDB表的索引的几个概念 2.   覆盖索引和回表 3.   分页查询 4.   延迟关联优化 写在前面 下面的介绍均是在选用MySQL数据库和Innodb引擎的基础开展.我们先来学习索引的几个概念,帮助我们理解延迟关联优化的加快分页查询速度的原因. 一.Innodb表的索引的几个概念 InnoDB表是基于聚簇索引建立的. 索引一般分为主键索引和普通索引(辅助索引),聚簇索引并不是主键索引这样的单独的索引类型,而是一种数据存储方式.通俗的来说,单独的索引是存储了索引信息的B…
Reduce join 原理 Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录.然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出. Reduce端的主要工作:在reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在map阶段已经打标志)分开,最后进行合并就ok了 需求 订单数据表t_order id pid amount 商品信息表t_product pid pname 小米 华…