我们在刚使用tensorflow的过程中,会遇到这个问题,通常我们有多个gpu,但是 在通过nvidia-smi查看的时候,一般多个gpu的资源都被占满,但是只有一个gpu的GPU-Util 和 219W / 250W(Usage/Cap)会被占满.实际上我们只有一个在跑,但是我们其实只需要 一个卡,其他卡要跑其他的资源,这是后怎么办呢. 可以在环境中就指定gpu机器可见: 如: import os os.environ["CUDA_DEVICE_ORDER"] = "PCI…
# 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/ex…
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存 sess = tf.Session(config=config) 1. 记录设备指派情况 :  tf.Conf…
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存 sess = tf.Session(config=config) 1. 记录设备指派情况 :  tf.Conf…
1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行.with......device语句能够用来指派特定的CPU或者GPU执行操作: import tensorflow as tf import numpy as np w…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)config.gpu_o…
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c…
持续监控GPU使用情况命令: $ watch -n 10 nvidia-smi1一.指定使用某个显卡如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 如果实验室多人公用一台服务器,希望指定使用特定某块GPU.可以在文件开头加入如下代码: import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = &qu…
TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow 将支持的 CPU 设备命名为"/device:CPU:0"(或"/cpu:0"),第 i 个 GPU 设备命名为"/device:GPU:I"(或"/gpu:I"). 如前所述,GPU 比 CPU 要快得多,因为它们有许多小的内…
建议比对『MXNet』第七弹_多GPU并行程序设计 一.tensorflow GPU设置 GPU指定占用 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7. GPU模式禁用 import os os.environ…