链接: P3209 题意: 给出 \(T\) 张无向图 \((T\leq100)\),并给出它对应的哈密顿回路,判断每张图是否是平面图. 分析: 平面图判定问题貌似是有线性做法的,这里给出链接,不是本题解重点. 在想不到上述算法的情况下,我们发现题目给出了该图的哈密顿回路,所以我们把无向图按哈密顿回路排成一个环.此时不在环上的边之间才可能出现交叉,所以我们考虑暴力 \(O(m^2)\) 枚举,对于可能产生交叉的两条边,只有他们在环的两侧时才不会相交,所以当 \(a,b\) 两条边可能相交时, \…
传送门 看到哈密顿回路就被吓傻了……结果没有好好考虑性质…… 首先,平面图有个性质:边数小于等于$3n-6$(我也不知道为啥),边数大于这个的直接pass 然后考虑原图,先把哈密顿回路单独摘出来,就是一个环.对于每一条不在哈密顿回路上的边,有两种可能,一种是在环内,一种是在环外 我们用点来表示每一条边,把每一个点拆成两个分别表示这条边是在环内还是环外.对于两条边$i,j$,如果他们同时在环外或环内会交叉,那么就相当于有了约束条件,转化成一个2-SAT问题即可 至于连边,我们设$i$表示在环内,$…
P3209 [HNOI2010]平面图判定 哈密尔顿环之外的任意一条边,要么连在环内部,要么连在环外部 判断两条边在同一部分会相交,则这两条边必须分开 那么把边看作点连边,跑二分图染色就行 #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> using namespace std; typedef long long LL; const LL maxn=50000…
P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你要判定的是一类特殊的图,图中存在一个包含所有顶点的环,即存在哈密顿回路. 输入输出格式 输入格式: 输入文件的第一行是一个正整数\(T\),表示数据组数 (每组数据描述一个需要判定的图).接下来从输入文件第二行开始有\(T\)组数据,每组数据的第一行是用空格隔开的两个正整数\…
题目描述 若能将无向图G=(V,E)画在平面上使得任意两条无重合顶点的边不相交,则称G是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你要判定的是一类特殊的图,图中存在一个包含所有顶点的环,即存在哈密顿回路. 输入输出格式 输入格式: 输入文件的第一行是一个正整数T,表示数据组数(每组数据描述一个需要判定的图).接下来从输入文件第二行开始有T组数据,每组数据的第一行是用空格隔开的两个正整数N和M,分别表示对应图的顶点数和边数.紧接着的M行,每行是用空格隔开的两个正整数u和v…
首先用一波神奇的操作,平面图边数m<=3*n-6,直接把m降到n, 然后对于冲突的边一条环内,一条环外,可以用并查集或者2Sat做, 当然并查集是无向的,2Sat是有向的,显然用并查集比较好 复杂度大概是O(T*n*n) #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #define pb push_back #define pii pair<int…
bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可以O(m^2)的连边 但是m是10000,不过平面图内边数不得超过3*n-6, m太大的直接NO就好了,其他的n,m是一个数量级的,直接2-sat暴力连边做就好了. 细节 双向边 是边m进行2-sat,不是点n 代码 #include <bits/stdc++.h> using namespace…
Description Input Output     是的..BZOJ样例都没给.     题解(from 出题人): 如果只考虑简单的平面图判定,这个问题是非常不好做的. 但是题目中有一个条件——这张图存在一条哈密顿回路. 我们把哈密顿回路在平面上画成一个圆.仔细观察一下. 每条边如果画在圆内都是一条弦,那如果弦在圆内相交怎么办?把另一条弦翻出去.能不能两条弦都翻出去呢?不能,因为如果两条边在圆内相交,那么它们在圆外也会相交.那我们是不是就相当于就多了一个条件:这两条边不能同时在一个域内.…
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环么? 于是,一个森林的模型被我们建出来了. 考虑到有修改弹力值的操作,也就是要断边和连边,于是用LCT维护. 思路一 每一个点向它弹到的位置连边.如果被弹飞了,那么这条边就不存在. 查询弹飞的步数,就是查询该点到其所属原树中根节点的路径的\(size\). 注意此题的一些特性.我们并不需要查询或者更…
题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是\(\sqrt n\)的模拟. #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using st…