题目大意 \(T\)(\(T\leq100\))组询问 有\(1\)到\(n\)(\(n\leq50000\))这\(n\)个整数组成的一个排列 定义这个排列的一个子区间是"连续"的,当且仅当这个子区间在位置上和在值域上都是连续的 分别给出这个排列以每个位置\(i\)为右端点的最长"连续"子区间的长度\(l_i\),问有多少个排列满足这个条件 题解 发现这些最长"连续"子区间一定是相互包含或相离的,不会相交 用反证法:假设有\(x<y\),…
[CTSC2018]青蕈领主 题解 首先,连续段要知道结论: 连续段要么不交,要么包含 所以是一棵树!每个位置的father是后面第一个包含它的 树形DP! 设dp[x],x为根的子树,(设管辖的区间长度为len,也即L[x]),用1~len的数填充,满足L的方案数 也就是,每个son内部合法, 给每个son分配标号区间,使得相邻儿子不会再接在一起 不会再接在一起? 所以可以把每个儿子看成单独一个点,就划归成了:1,1,1,1,...len的方案数! 设f[i]表示,长度为i+1的1,1,1,1…
Loj #2554. 「CTSC2018」青蕈领主 题目描述 "也许,我的生命也已经如同风中残烛了吧."小绿如是说. 小绿同学因为微积分这门课,对"连续"这一概念产生了浓厚的兴趣.小绿打算把连续的概念放到由整数构成的序列上,他定义一个长度为 \(m\) 的整数序列是连续的,当且仅当这个序列中的最大值与最小值的差,不超过\(m-1\).例如 \(\{1,3,2\}\) 是连续的,而 \(\{1,3\}\) 不是连续的. 某天,小绿的顶头上司板老大,给了小绿 \(T\)…
首先显然的是,题中所给出的n个区间要么互相包含,要么相离,否则一定不合法. 然后我们可以对于直接包含的关系建出一棵树,于是现在的问题就是给n个节点分配权值,使其去掉最后一个点后不存在非平凡(长度大于1)的连续区间. 我们发现这个方案数和不存在不经过最大(小)值的非平凡连续区间的排列数是等价的. 于是我们考虑$f[n]$为长度为$n+1$的答案,我们考虑去掉最小值. 如果合法,那么必然是$f[n-1]$中的一种情况,而这时我们要将最小值插进去,我们发现,只要不插在次小值旁边就都是合法的,于是这部分…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ401.html 题解 首先,对于一个排列,它的连续段一定只有包含关系,没有相交关系. 我们可以据此得到一棵表示连续段的树. 对于一个连续段节点,它有若干儿子. 由于它的每一个儿子都是连续段,所以我们可以将这些儿子各自看作一个数.设节点x的度数为 d[x]. 设 f[x] 表示 L 数组为 1,1,1,...1,L+1 这样的排列个数,那么答案就是 $\prod f[d[x]]$ . 然后我们得到了一个关于 f[x] 的…
题目:https://loj.ac/problem/2554 一个“连续”的区间必然是一个排列.所有 r 不同的.len 最长的“连续”区间只有包含.相离,不会相交,不然整个是一个“连续”区间. 只有包含.相离,可以看出一个树形结构.直接暴露在自己区间里的小区间(即没有被其他小区间包含)就是自己的孩子. 每个孩子的值是一个区间,自己的值也是一个区间,不同孩子的区间不能融合,所以每个孩子看成一个点,自己的右端点也是一个点,值就是一个长度为 “孩子个数+1” 的合法排列.合法指的是除了最后一个位置的…
传送门 话说分治\(FFT\)是个啥子啊--还有题目里那字好像念(蕈xùn) 首先考虑无解的情况:区间相交或者\(L_n\neq n\) 这两个都可以感性理解一下 所以区间之间只会有包含关系,我们把每个小区间向它右边的第一个包含它的大区间连边,那么会构成一个树形结构 对于一个大区间来说,那些作为它儿子的小区间每一个都是连续的,并且互不相交,假设它有\(sz\)个儿子,把每一个儿子都缩成一个点,那么就是需要一个排列满足\(L\)分别为\(1,1,1,...,sz+1\),其中第\(sz+1\)个是…
题目大意 有两棵\(n\)(\(n\leq366666\))个节点的树,\(T\)和\(T'\),有边权 \(dep(i)\)表示在\(T\)中\(i\)号点到\(1\)号点的距离,\(dep'(i)\)表示在\(T'\)中\(i\)号点到\(1\)号点的距离 \(lca(i,j)\)表示在\(T\)中\(i\)号点到\(j\)号点的简单路径上到\(1\)号点边数最少的点,\(lca'(i,j)\)表示在\(T'\)中\(i\)号点到\(j\)号点的简单路径上到\(1\)号点边数最少的点 求\(…
题目大意 有\(n\)(\(n\leq200\))个非负整数\(m_1,m_2,...,m_n\)(\(\forall i\in[1,n],m_i\leq100\)),有\(q\)(\(q\leq2*10^5\))个操作,每个操作是以下两种之一: (1)给出位置\(x\),概率\(q\),若\(m_x\)大于0,则有\(q\)的概率将\(m_x\)减一:若\(m_x\)为0,则不进行任何操作 (2)给出一个数\(k\)和\(k\)个不重复的位置\(d_1,d_2,...d_k\),在\(m_{d…
CTSC2018 & APIO2018 颓废 + 打铁记 CTSC 5 月 6 日 完美错过报道,到酒店领了房卡放完行李后直接奔向八十中拿胸牌.饭票和资料.试机时是九省联考的题,从来没做过,我也不打算做了,随便试了下键盘.打了个 \(A + B\) problem 就离开了机房:找到了学弟学妹带他们回酒店颓-- 晚上定外卖,领队将密码条送来,一日无事. 5 月 7 日 上午 8:30 开始的考试推到了 9:06,好像不同考场开始时间还不一样?! 上来先看了看每道题,时限分别是 \(6\textt…