北京集训TEST13——PA(Goodness)】的更多相关文章

题目: Description 桌面上放有 n 张卡牌.对于每张卡牌,一面是绿色的,另一面是红色的.卡牌的每一面都标有一个整数.对于卡牌a和卡牌b,卡牌a对卡牌b的好感度为卡牌a绿色面的数与卡牌b红色面的数的乘积. 举个例子,如果卡牌a绿色面标有10,红色面标有3:卡牌b绿色面标有7,红色面标有-2.那么a对b的好感度为 10×(−2)=−20 ,b对a的好感度为 7×3=21 .则a和b的好感度的差异为 |21−(−20)|=41 . 现在,你知道这 n 张卡牌每一面的数,请你找出两张卡牌,使…
题目: Description [问题描述] 从n个数中选若干(至少1)个数求和,求所有方案中第k小的和(和相同但取法不同的视为不同方案).[输入格式]    第一行输入2个正整数n,k.    第二行输入这n个正整数.[输出格式]    输出第k小的和.[样例输入]5 121 2 3 5 8[样例输出]8[样例解释]    前12小的和分别为:1 2 3 3 4 5 5 6 6 7 8 8[数据规模和约定]    测试点1,n<=16.    测试点2-3,n<=100,k<=500.…
题目: Description 有一天,有N个外星人企图入侵地球.地球派出全球战斗力最强的M个人代表人类对抗外星人.根据外星的战斗规则,每个外星人应该分别与一名地球人对战(不同的外星人要与不同的地球人对战).如果任意一个外星人获胜,那么地球将被外星人占领. 幸运的是,人类可以决定对战顺序,且可以决定每次对战的两名战士,但是要保证符合外星的战斗规则. 地球有一个保护神.他能提前预知每一名地球人和每一名外星人的战斗结果.在战争开始前,保护神必须确定第一场战斗的两名战士.举个例子:假设第一场为人类A对…
[北京集训D2T3]tvt \(n,q \le 1e9\) 题目分析: 首先需要对两条路径求交,对给出的四个点的6个lca进行分类讨论.易于发现路径的交就是这六个lca里面最深的两个所形成的链. 然后即可再分两种情况进行讨论. 对于同向的路径,我们可以求出到达交的起点的时间差,然后与链上的最长边进行比较,如果大于说明可行. 对于对向的路径,如果能在时间差内走到交集上,同时不是在一个顶点相遇那么一定就是合法情况,否则就是不合法情况.这部分可以用倍增解决. #include <bits/stdc++…
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$直接到达终点的概率,显然期望步数就是$\frac{1}{f_i}$: 考虑转移,设下一个事件概率为$p$,则 如果下一个事件是敌人:$f_i=f_{i+1}*p$ 如果下一个事件是旗子: $f_{i}=(1-p)*(1-f_{i+1})*(1+p*(1-f_{i+1})+p^{2}*(1-f_{i+…
题意 你有一个字符串,你需要支持两种操作: 1:在字符串的末尾插入一个字符 \(c\) 2:询问当前字符串的 \([l,r]\) 子串中的不同子串个数 为了加大难度,操作会被加密(强制在线). \(n,m\le 50000\),空间 \(\text{1GB}\) 题解 原题好像是[北京集训 2017 String],题意:给你一个模板串 \(T\),有 \(Q\) 组询问,每组询问给出 \(2\) 个正整数 \(l,r\),请你找出 \(T[l...r]\) 中出现至少 \(2\) 次的最长子串…
Time Limit: 1000 ms   Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之后,到达终点之前,不再回到事件$i$或事件$i$的左边的概率,反过来说就是可以在右边乱绕,若事件$i$的位置为pos,“右边”指的就是$(pos,h]$. 我们将第$i$个事件到第$i+1$个事件中间这一段路程记为$S_i$,那么期望经过$S_i$的次数就为$1/f_i$. 为什么是$1/f_i$呢…
Description 题解 (这可是一道很早就碰到的练习题然后我不会做不想做,没想到在Contest碰到欲哭无泪......) 题目大意是寻找三点对的个数,使得其中的三个点两两距离都为d. 问题在于,这个d不是定值啊,这使得DP的进行比较困难. 于是这个神奇解法在DP过程中把d省去了! 状态表示 $f [u][i]$: 以u为根的子树内,到u的距离为i的节点个数,$f [u][0]=1$ . $g [u][i]$:以u为根的子树内,存在多少点对 (a,b),它们到它们的lca的距离都为d,且它…
Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多点数列套着来加速转移呢? 但是发现好像太多数列套起来是可以烦死人的...... 我们就采用嵌套两次吧(第三次以后规律就不明显了),记原数列为A,第一层嵌套为B,第二层嵌套为C. 我们其实可以发现一些规律,对于Ci,它对应了B中i的个数:对于Bi,它对应了A中i的个数. 稍加处理即可,我们一边计算一边…
Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组的有色无向边.求一种方案,包括若干个不相交的连通块,覆盖全部点,每个连通块满足能一笔画(不经过重复的点)并且相邻两次经过的边颜色不相同(开头和结尾经过的边也不能相同). 是不是有点类似二分图匹配的问题呢?我们还是考虑用最大流来建图. 一笔画的时候,每一个经过的点有且只有一条入边,有且只有一条出边,即…
HINT 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. [吐槽] 嗯..看到这题的想法的话..先想到了每个点的度为2,然后就有点不知所措了 隐隐约约想到了网络流,但并没有继续往下想了... 听完学长的讲评之后(%xj)个人觉得建图还是很有意思的ovo [题解] 因为每个点到对面都有k种方式,那就想到每个点原来的点$x_0$拆成k个点$x_1$, $x_2$, $x_3$... $x_k$ 然后很自然地$x_0$和拆成的点之间要连边 容量的话,因为hint里面的限制…
[吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难得的一道搞得比较清楚的概d题目吧记录一下还是挺有意思的ovo 当然咯..显然考场上并没有推出来..嗯qwq [题解] 看到说要求期望的距离,然后总的长度又被分成了一段一段的(各个事件) 所以就有一个比较直接的想法:将每一段期望走的次数算出来然后再乘上每一段的距离,加起来就是答案啦 那么现在问题来了怎…
题目大意:给你一个代表区间$[1,n]$的线段树,问你随机访问区间$[1,n]$中的一个子区间,覆盖到的线段树节点个数的期望(需要乘上$\frac{n(n-1)}{2}$后输出). 数据范围:$n≤10^{18}$ 貌似各位的做法都非常优秀,代码也非常短,那么我来讲一个垃圾做法: 我们设$f[i]$表示一个构建出$[1,i]$的线段树,随机访问一个子区间覆盖线段树节点个数的期望(为方便处理,乘上了$\frac{i(i-1)}{2}$). 显然$f[n]$就是答案. 我们再设$fl[j][i]$表…
题目大意:你有$n$个操作和一个初始为$0$的变量$x$. 第$i$个操作为:以$P_i$的概率给$x$加上$A_i$,剩下$1-P_i$的概率给$x$乘上$B_i$. 你袭击生成了一个长度为$n$的排列$C$,并以此执行了第$C_1,C_2....C_n$个操作. 求执行完所有操作后,变量$x$的期望膜$998244353$的值. 数据范围:$n≤10^5,0≤P,A,B<998244353$ 我太菜了. 考虑如果并没有排列的要求,而是强行依次执行,会发生什么事情: 令$X_i$表示执行完前$…
此题niubi! 题目大意:给你一颗n个点的点带权无根树,现在请您进行以下两步操作: 1,选择一个$[0,T]$之间的整数$C$,并令所有的点权$wi$变为$(wi+C)%MOD$ 2,选择若干条点不相交的路径:设选择的条数为$k$,覆盖的点的点权和为$S$,则收益为$\frac{S}{k+1}$ 请您求出收益最大可能为多少. 数据范围:$T,S≤10^5$,$n≤5000$ 我们先不考虑修改点权的过程,只考虑求最大收益应该如何做. 我们显然有一种$O(n^2)$的做法,但是复杂度太高了,加上修…
题目大意:有一颗有$m$个叶子节点的二叉树. 对于叶子节点$i$,$x[i]=(a[i]\ xor\ V_{p[i]})or(b[i]\ xor\ V_{q[i]})$ 对于非叶子节点$i$,$x[i]=x[sonl]\ and\ x[sonr]$. 上文的$or$和$xor$均为逻辑运算符.且V为一个长度为$n$的布尔数组,需要你自己构造. 下面问:对于每个非叶子节点$i$,问是否存在一个序列V,使得$x[i]=true$. 数据范围:$n,m≤2\times 10^{5}$ 我们先来考虑下暴…
题目大意:给你一个长度为$n$的序列$A_i$,有$q$次操作,每次操作为以下三种之一: 询问区间的$F_M(A_i)$的最大公约数. 区间翻转,区间加一个正数. 我们定义$gcd(0,0)=0$,且$F_M(A_i)$为在一个$M$个点的无向完全图中从第一个点开始走$k$步后回到第一个点的方案数. 数据范围:$n,q≤10^5$,$0≤A_i≤10^8$,$2≤M≤10^9$. 我们先考虑下如何求$F_M(x)$. 经过打表(大雾),我们发现: 若$x$为偶数,则$F_M(x)=M\times…
题目大意:给你$n$个点,第$i$个点有点权$v_i$.你需要将这$n$个点排成一排,第$i$个点的点权能被累加当且仅当这个点前面存在编号在$[l_i,r_i]$中的点,问你这些点应该如何排列,点权和才能最大. 数据范围:$n≤10^5$,$1≤v_i≤10^4$. 这题状压居然给了70分,场上压根没想正解. 我们不难发现,对于点i,我们连接$l_i→i$,$(l_i+1)→i$,....,$r_i→i$的边,然后跑一个tarjan,缩点后我们得到了一棵树. 对于每棵树,我们显然只需要减去这棵树…
Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\sum _{i=0}^{n}C(n,i)*i!*S(i,x)$ 围观大佬博客(qaq公式太难打了) Code #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using na…
Description Solution 由于题目要求,将a[i]->b[i](边权为i)后所得的图应该是由森林和环套树组合而成. 假如是树形结构,所有的t[i]就直接在线段树t[i]点的dfs序(即in[t[i]],out[t[i]]区间)处记录t[i]点的深度. 这样,针对所有的f[i],在线段树上查找所有包含in[f[i]]点的区间所记录的最大深度d.(这个深度就是在离f[i]最近并且已经验证了是真命题的祖先的深度) 然后用倍增算出f[i]向上到深度d,所经过的编号最大值c.ans=min…
Description Solution 如图,假如我们知道了以任何一个点为顶点的135-180度的前缀和和90-180度的前缀和,我们就可以搞出三角形的面积. 差分.add[i][j]和dev[i][j]都表示相对点[i][j-1],点[i][j]应该+或-的大小.这样只要我们需要,可以在O(n2)的时间里求出整个图的前缀和. 然后,不可能每一次查询都求一次前缀和的.考虑分块.记录当前添加的修改的操作数cnt.如果cnt=2500,则把图的前缀和全部求出来,对cnt,add,dev初始化. 假…
矩阵快速幂原来还可以这么用?? 你们城里人还真会玩. 我们令$f[i][j][k]$表示总的钱数为i,当前使用的最大面值硬币的面值为$v_j$,最小为$v_k$的方案数量. 不难发现$f[i][j][k]=\sum f[a][j][l]\times f[b][l][k] $其中$l∈[k,j],a+b=i$. 很显然,这个转移过程不就是矩阵乘法的过程吗?? 考虑到$\forall v_i>v_j$,有$gcd(v_i,v_j)=v_j$,则$f[v_i]$可以由$f[v_j]$通过矩阵乘法转移得…
首先我们来看下此题的模数232792561. 232792561=lcm(1,2,3.......20)+1.这个性质将在求值时用到. 我们将n分解质因数,令$m$为$n$的素因子个数,设n=$\Pi_{j=0}^{m-1} p_j^{b_j}$ ,其中$p_j$是素数且$p_0$至$p_{m-1}$从小到大排列.考虑到$n≤10^{18}$,则$m≤15$. 我们用 $f[i][j]$ 表示当前$n$的因数$x$所表示的状态为$i$,且模$k$为$j$时的方案数. 下面讲下如何用一个已知的因数…
Description Solution 设y[i+k]=y[i]+n. 由于我们要最优解,则假如将x[i]和y[σ[i]]连线的话,线是一定不会交叉的. 所以,$ans=\sum (x_{i}-y_{i+s}+c)^{2}$ 拆开得$ans=\sum (x_{i}^{2}+y_{i+s}^{2}+c^{2}-2x_{i}y_{i+s}+2x_{i}c-2y_{i+s}c)$ 其中,$x_{i}y_{i+s}$是卷积形式. 我们把经过处理的y数组reverse一下,和x数组进行卷积(这里用ntt…
Description Solution 将(u,v,l,r)换为(1,u,v,l)和(2,u,v,r).进行排序(第4个数为第一关键字,第1个数为第二关键字).用LCT维护联通块的合并和断开.(维护联通块的大小,要维护虚边) 答案统计:每当四元组的第一个数为1(这时候合并点u,v所在连通块,反之拆开),在合并前ans+=size[u]*size[v]即可. Code #include<iostream> #include<cstdio> #include<cstring&g…
Description Solution bitset是个好东西啊..强行压位什么的真是够orz. 由于所有的蘑菇上房间的长相是一样的,我们针对每个房间,算出它到根节点的bitset和以它为根的子树的bitset. 每次新开一个蘑菇,为了防止被卡空间,我们只是把指针指向蘑菇u的bitset,并且cnt[u]++.只有当对这个新蘑菇进行操作的时候,才给它单独开一个 bitset. 本题的题解一句话-优雅的暴力. Code #include<iostream> #include<cstdio…
Description A 联邦国有 N 个州,每个州内部都有一个网络系统,有若干条网络线路,连接各个 州内部的城市. 由于 A 国的州与州之间的关系不是太好,每个州都只有首府建立了到别的州的网络.具体来说,每个州的首府都只主动地建立了一条网络线路,连接到距离最近的州的 首府.(欧氏距离.如果有多个,选择标号最小的去连接) B 国探知了 A 国的网络线路分布情况,以及攻陷每条网络线路所需花费的代价,B 国首脑想知道断开 A 国某两个城市之间的网络连接,所需的最少代价.请你计算出来告 诉他. 注:…
Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em(然而我并不会推) 如果您恰好看到这篇博,又恰好有空的话,欢迎探讨~ Code #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std;…
Portal --> 出错啦qwq(好吧其实是没有) Description 给定两个正整数\(n,k\),选择一些互不相同的正整数,满足这些数的最小公倍数恰好为\(n\),并且这些数的和为\(k\)的倍数 求选择的方案数对\(232792561\)取模 数据范围:多组数据,组数\(T<=10,n<=10^{18},k<=20\),且\(n\)的所有质因子不大于\(100\) Solution 这题..好神仙啊qwq敲爆脑子都想不出来系列qwq 注意到\(n<=10^{18}…
Description Solution 本博客参考yww大佬的博客,为了加深理解我就自己再写一遍啦. 以下的“无向图”均无重边无自环. 定义f0[n]为n个点构成的无向图个数,f1[n]为n个点构成的无向图的总边数,f2[n]为所有(n个点构成的无向图的边数的平方)之和. g0[n]为n个点构成的连通无向图个数,g1[n]为n个点构成的连通无向图的总边数,g2[n]为所有(n个点构成的连通无向图的边数的平方)之和. 设$m[i]=i*(i-1)/2$ 每条边可以选或不选,所以$f0[i]=2^…