Boltzmann 玻尔兹曼机(BM)】的更多相关文章

Hopfield + 模拟退火 ⇒ Boltimann machine(随机神经网络),由 Hinton 和他的长期合作者 Sejnowski(Hopfield 的博士生) 共同提出. 1. 基本公式 netj=∑iwijxi−Tj Pj(1)=11+e−netj/Tj(第 j 个神经元取 1 的概率) 显然 Pj(0)=1−Pj(1)…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
[原文]    浅析 Hinton 最近提出的 Capsule 计划     关于最新的 Hinton 的论文 Dynamic Routing Between Capsules,参见 https://www.zhihu.com/question/67287444/answer/251241736. 最近一次更新 17-10-11 11:00 (UTC+8).改善了一些表述,在无监督学习部分加入了'Tufas' 相关内容,以及视觉皮层的结构. 上一次更新 17-09-22 15:00 (按中国时间…
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, 2016 BY FJODOR VAN VEEN   With new neural network architectures popping up every now and then, it's hard to keep track of them all. Knowing all the a…
Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时 在论文中,Capsule被Hinton大神定义为这样一组神经元:其活动向量所表示的是特定实体类型的实例化参数.他的实验表明,鉴别式训练的多层Capsule系统,在MNIST手写数据集上表现出目前最先进的性能,并且在识别高度重叠数字的效果要远好于CNN. 该论文无疑将是今年12月初NIPS大会的重头戏. 一个月前,在多伦多接受媒体采访时,Hinton大神断然宣称要放弃反向传播,让整个人工智能从头…
看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过. http://www.ics.uci.edu/~welling/classnotes/classnotes.html Statistical Estimation [ps]- bayesian estimation- maximum a posteriori (MAP) estimation- maximum likelihood (ML) estimation- Bias/Variance…
Hopfield网络具有最优计算功能,然而网络只能严格按照能量函数递减方式演化,很难避免伪状态的出现,且权值容易陷入局部极小值,无法收敛于全局最优解. 如果反馈神经网络的迭代过程不是那么死板,可以在一定程度上暂时接受能量函数变大的结果,就有可能跳出局部极小值.随机神经网络的核心思想就是在网络中加入概率因素,网络并不是确定的向能量函数减小的方向演化,而是以一个较大概率向这个方向演化,以保证正确的迭代方向,同时想能量函数增大的概率也存在,以防止陷入局部极小值. 在机器学习以及优化组合问题中,最常用的…
受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochastic neural network),该网络由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}.整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元…
这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/restricted-boltzmann-machine/ 翻译如下: (注:下文中的"我"均指原作者) 受限玻尔兹曼机--简单的教程 我读过很多关于RBM的论文,但是要理解它所有的实现细节似乎有些难度. 因此我想和大家分享一些我在面对这些困难时收获的经验.我的教程是基于RBM的一个变种,…
一.背景介绍 玻尔兹曼机 = 马尔科夫随机场 + 隐结点 二.RBM的Representation BM存在问题:inference 精确:untractable: 近似:计算量太大 因此为了使计算简便,引入了RBM,RBM假设h,v之间有连结,h,v内部无连结 从NB(朴素贝叶斯)推导到RBM的过程图  三.RBM的Inference 主要是已知learning求得参数之后,再来求后验概率P(h|v).P(v|h),以及边缘概率P(v)…