Python数据分析2------数据探索】的更多相关文章

[ python数据分析笔记——数据加载与整理] https://mp.weixin.qq.com/s?__biz=MjM5MDM3Nzg0NA==&mid=2651588899&idx=4&sn=bf74cbf3cd26f434b73a581b6b96d9ac&chksm=bdbd1b388aca922ee87842d4444e8b6364de4f5e173cb805195a54f9ee073c6f5cb17724c363&mpshare=1&scene=…
# 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly.seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多. 前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下.原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还…
一.数据探索 数据探索的目的:及早发现数据的一些简单规律或特征 数据清洗的目的:留下可靠数据,避免脏数据的干扰. 两者没有严格的先后顺序,经常在一个阶段进行. 分为: (1)数据质量分析(跟数据清洗密切联系):缺失值分析.异常值分析.一致性分析.重复数据或含有特殊符号的数据分析 (2)数据特征分析(分布.对比.周期性.相关性.常见统计量等): 二.数据探索操作 查看数据前5行:dataframe.head()   #查看数据的信息,包括每个字段的名称.非空数量.字段的数据类型   : data.…
背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly.seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多. 前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下.原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还是发…
目录 数据质量分析   当我们得到数据后,接下来就是要考虑样本数据集的数据和质量是否满足建模的要求?是否出现不想要的数据?能不能直接看出一些规律或趋势?每个因素之间的关系是什么?   通过检验数据集的数据质量,绘制图表,计算某些特征值等手段,对样本数据集的结构和规律进行分析的过程就是数据探索.数据质量检测对后面的数据预处理有很大参考作用,并有助于选择合适的建模方法.   数据探索大致分为 质量探索 和 特征探索 两方面. 数据质量分析    定义:数据质量分析是数据预处理的前提,也是对数据挖掘的…
主要内容: 创建数据表 查看数据表 数据表索引.选取部分数据 通过标签选取.loc 多重索引选取 位置选取.iloc 布尔索引 Object Creation 新建数据 用list建series序列 In [73]: s = pd.Series([1,3,5,np.nan,6,8]) In [74]: s Out[74]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 用numpy array建dataframe In [75]: date…
一.shuffle函数: import numpy.random def shuffleData(data): np.random.shufflr(data) cols=data.shape[1] X=data[:,0:cols-1] Y=data[:,cols-1:] return X,Y 二.np.random.permutation()函数 这个函数的使用来随机排列一个数组的, 一维数组: 对多维数组来说,是多维随机打乱而不是1维,例如: 如果要利用次函数对输入数据X.Y进行随机排序,且要…
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4节 透视表和交叉表 第5节 时间序列 第6节 日期的规范.频率以及移动 第7节 时区处理 第8节 时期及算术运算 第9节 重采样及频率转换 第10节 时间序列绘图 groupby 技术 一.实验简介 Python 数据分析(二)需要同学们先行学完 Python 数据分析(一)的课程. 对数据集进行分…
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总…
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2…
最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每一步来熟悉应用python进行数据挖掘的方式. 数据挖掘的一般过程是:数据预览——>数据预处理(缺失值.离散值等)——>变量转换(构造新的衍生变量)——>数据探索(提取特征)——>训练——>调优——>验证 1 数据预览 1.1 head() 预览数据集的前面几条数据可以大致…
目录 图1 每年的月票房走势图 图2 年票房总值.上映影片总数及观影人次 图3 单片总票房及日均票房 图4 单片票房及上映月份关系图 在上一部分<[python数据分析实战]电影票房数据分析(一)数据采集> 已经获取到了2011年至今的票房数据,并保存在了mysql中. 本文将在实操中讲解如何将mysql中的数据抽取出来并做成动态可视化. 图1 每年的月票房走势图 第一张图,我们要看一下每月的票房走势,毫无疑问要做成折线图,将近10年的票房数据放在一张图上展示. 数据抽取: 采集到的票房数据是…
python数据分析数据标准化及离散化详解 本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下 标准化 1.离差标准化 是对原始数据的线性变换,使结果映射到[0,1]区间.方便数据的处理.消除单位影响及变异大小因素影响. 基本公式为:     x'=(x-min)/(max-min) 代码:     #!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np imp…
1.导入CSV格式数据 import pandas data = pandas.read_csv("C:\\Users\\zhaosai\\Desktop\\进击的DBA\\谁说菜鸟不会数据分析(Python篇)--数据\\PDABook\\第四章\\4.1.1 数据导入\\1.csv", engine="python"#设置engine="python"为防止文件路径中含有中文,报出异常 ) data #输出查看 read_csv方法参数列表…
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 引言 最近这个系列有段时间没更新,理由也就不找了,总结就一点,懒!懒得学习! 我就是这么一个能勇于发现并且承认错误…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 引言 上一篇文章我们介绍如何在 Pandas 一些基础的查看数据的操作,但是官方更推荐我…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 引言…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
最近股市比较火,我7月初上车了,现在已经下了.中间虽然吃了点肉,但下车的时候都亏进去了,最后连点汤都没喝着. 这篇文章我们就用python对股票数据做个简单的分析.数据集是从1999年到2016年上海证券交易所的1095只股票. 共1000个文件. 我们的分析思路大致如下: 每年新发股票数 目前市值最大的公司有哪些 股票一段时间的涨跌幅如何 牛市的时候,个股表现如何 首先导入模块 import pandas as pd import numpy as np import os import se…
一.爬取老番茄B站数据 前几天开发了一个python爬虫脚本,成功爬取了B站李子柒的视频数据,共142个视频,17个字段,含: 视频标题,视频地址,视频上传时间,视频时长,是否合作视频,视频分区,弹幕数,播放量,点赞数,投币量,收藏量,评论数,转发量,实时爬取时间 基于这个Python爬虫程序,我更换了up主的UID,把李子柒的uid换成了老番茄的uid,便成功爬取了老番茄的B站数据.共393个视频,17个字段,字段同上. 这里展示下爬取到的前20个视频数据: 基于爬取的老番茄B站数据,用pyt…
数据质量分析 脏数据包括:缺失值:异常值:不一致的值:重复数据及含有特殊符号的数据: 1.缺失值处理 统计缺失率,缺失数 2.异常值处理 (1)简单统计量分析 (2)3Q原则 正态分布情况下,小概率事件为异常值 不服从正太分布的,可以用原离平均值多少倍标准差来分析 (3)箱线图分析 使用describe()描述 主要数据探索函数 1.Pandas常用函数总结 导入数据 导出数据 查看.检查数据 数据选取 数据清理 dataframe处理NAN值 data_3=data_3.where(data_…
数据探索的核心: 1.数据质量分析(跟数据清洗密切联系,缺失值.异常值等) 2.数据特征分析(分布.对比.周期性.相关性.常见统计量等) 数据清洗的步骤: 1.缺失值处理(通过describe与len直接发现.通过0数据发现) 2.异常值处理(通过散点图发现) 一般遇到缺失值,处理方式为(删除.插补.不处理) 插补 遇到异常值,一般处理方式为视为缺失值.删除.修补(平均数.中位数等).不处理.…
1.探索数据 1.1 安装agate库 1.2 导入数据 1.3 探索表函数 a.排序 b.最值,均值 c.清除缺失值 d.过滤 e.百分比 1.4 连结多个数据集 a.捕捉异常 b.去重 c.缺失数据的处理 d.联结数据集 1.5 识别相关性 利用numpy分析 1.6 找出离群值 a.使用标准差 b.使用绝对中位差 (数据分布以及数据分布所展现的趋势) 1.7 数据分组 研究数据分组之间的关系(创建分组,聚合这些分组,确定分组之间的联系) 2 分析数据 2.1 分析数据与探索数据的区别 分析…
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基础篇我也看了,但发现有不少理论还是讲得不够透彻,个人还是比较倾向于 <Machine Learning>--Tom M.Mitchell,Andrew 的 machine learning 课程,或周华志的<机器学习>,Jiawei Han 的 <data mining>.…