Deep Networks : Overview】的更多相关文章

Overview In the previous sections, you constructed a 3-layer neural network comprising an input, hidden and output layer. While fairly effective for MNIST, this 3-layer model is a fairly shallow network; by this, we mean that the features (hidden lay…
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercise: Implement deep networks for digit classification.利用深度网络完成MNIST手写数字数据库中手写数字的识别.即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作为训练数据集,然后把它输入到栈式自编码器中,它的第一层自编码器…
Initialization of deep networks 24 Feb 2015Gustav Larsson As we all know, the solution to a non-convex optimization algorithm (like stochastic gradient descent) depends on the initial values of the parameters. This post is about choosing initializati…
(一)Highway Networks 与 Deep Networks 的关系 理论实践表明神经网络的深度是至关重要的,深层神经网络在很多方面都已经取得了很好的效果,例如,在1000-class ImageNet数据集上的图像分类任务通过利用深层神经网络把准确率从84%提高到了95%,然而,在训练深层神经网络的时候却是非常困难的,神经网络的层数越多,存在的问题也就越多(例如大家熟知的梯度消失.梯度爆炸问题,下文会详细讲解).训练起来也就是愈加困难,这是一个公认的难题. 2015年由Rupesh…
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:https://arxiv.org/pdf/1812.11703.pdf Project:https://lb1100.github.io/SiamRPN++ 1. Background and Motivation: 与 CVPR 2019 的另一篇文章 Deeper and Wider Siames…
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ICML 2017 Paper:https://arxiv.org/pdf/1703.03400.pdf Code for the regression and supervised experiments:https://github.com/cbfinn/maml Code for the RL experiments:https://github.com/cb…
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks for digit classification stackedAEPredict.m function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data) % stackedAEPre…
In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyond the academic world with major players like Google, Microsoft, and Facebook creating their own research teams and making some impressive acquisition…
深度学习中潜藏的稀疏表达 Deep Networks for Image Super-Resolution with Sparse Prior http://www.ifp.illinois.edu/~dingliu2/iccv15/ 浅谈深度学习中潜藏的稀疏表达 | 统计之都https://cosx.org/2016/06/discussion-of-sparse-coding-in-deep-learning 浅谈深度学习中潜藏的稀疏表达 - 菜鸡一枚 - 博客园 http://www.cn…
Rupesh Kumar SrivastavaKlaus Greff ̈J urgenSchmidhuberThe Swiss AI Lab IDSIA / USI / SUPSI{rupesh, klaus, juergen}@idsia.ch AbstractTheoretical and empirical evidence indicates that the depth of neural networksis crucial for their success. However, t…