ML学习笔记- 神经网络】的更多相关文章

神经网络 有的模型可以有多种算法.而有的算法可能可用于多种模型.在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器.神经网络在学习中,一般分为有教师和无教师学习两种.感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的.在主要神经网络如Bp网络,Hopfield网络,ART络和Kohonen网络中;Bp网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Khonone网络则无…
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这时候就没法用信息增益.信息增益率.基尼系数来判定树的节点分裂了,那么回归树采用新的方式是预测误差,常用的有均方误差.对数误差等(损失函数).而且节点不再是类别,而是数值(预测值),划分到叶子后的节点预测值有不同的计算方法,有的是节点内样本均值,有的是最优化算出来的比如Xgboost. XGBoost…
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,对A事件概率的一个判断.P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,对A事件概率的重新评估.P(B|A)/P(B)称为"可能性函数"(Lik…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…
[ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量的关系. 回归与分类的区别:回归预测的是连续变量(数值),分类预测的是离散变量(类别). 线性回归 线性回归通过大量的训练出一个与数据拟合效果最好的模型,实质就是求解出每个特征自变量的权值θ. 设有特征值x1.x2(二维),预测值 $ h_\theta(x)=\theta_0 + \theta_1x…
2019/03/09 16:16 归一化方法: 简单放缩(线性归一化):这种归一化方法比较适用在数值比较集中的情况.这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定.实际使用中可以用经验常量值来替代max和min. 特征标准化:经过处理的数据符合标准正态分布,即均值为0,标准差为1. 逐样本均值消减(非线性的归一化): 经常用在数据分化比较大的场景,有些数值很大,有些很小.通过一些数学函数,将原始值进行映射.该方法包括 log.指数,正切等.需要根…
0x00 什么是TF-IDF TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率). # 是一种用于资讯检索与资讯探勘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降. 上述引用总结就是, 一个词语在一篇文章中出现次数越多, 同时在所有文档中出现次数越少, 越能够代表该文章.…
作者:@houkai本文为作者原创,转载请注明出处:https://www.cnblogs.com/houkai/p/3399646.html 0x00 概述 TEX 是Donald E. Knuth 编写的一个以排版文章及数学公式为目标的计算机程序.TEX的版本号不断趋近于π,现在为3.141592.由Pascal 语言写成,特点: 免费.输出质量高.擅长科技排版.有点像编程. LATEX 目前使用最广泛的TEX 宏集. 每一个LATEX 命令实际上最后都会被转换解释成几个甚至上百个TEX命令…
0x00 概述 Jupyter Notebook安装的官方网站 安装Jupyter Notebook的先决条件:已经安装了python(python 2.7 或者是python3) 具体的安装方法: 官方建议利用Anaconda安装Jupyter 安装完成Anaconda后,如果该Anaconda并不自带Jupyter Noterbook,那么,打开cmd,输入:conda install jupyter 可以使用pip install jupyter安装 0x01 更改Jupyter note…
0x00 概述 在没有安装XGBoost之前,import xgboot会出错,如下: # ModuleNotFoundError: No module named ‘xgboost’ 0x01 安装xgboost 前提条件:windows环境下,anaconda(这里指的是Anaconda3)已安装,相应的numpy和sicpy已安装 下面介绍最简单的安装方式: 打开Anaconda Prompt输入命令 : # pip install xgboost -i https://pypi.tuna…